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ABSTRACT
The 14th edition of a textbook is not making it a better material for beginners, so
I decided to draft my own lecture notes based off various resources. These lecture
notes are freely available and can be downloaded at https://faculty.sist.
shanghaitech.edu.cn/chenjh/courses/.
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1. Introduction to Control

In my first lecture on Sept. 26th, 2023, I was suggesting there should be a second
episode for the Youtube video entitled “Animation vs. Math” featuring TSC, the
sticker man.1 But this time, we are going to further allow him to bring a new set of
tools, including:

u, and
d

dt
(1)

where u grants TSC the ability to control, and d
dt is the magic operator that brings

to life some state variable x ∈ R describing a system, such that x begins to evolve
with time t.

In this chapter, let’s focus on explaining those three elements we have just men-
tioned: time, system, and control.

1.1. What is Time?

Is time really a thing?

First of all, let’s define time. The time is measured in terms of periodic events. The
sun rise and sun set, making a day. The SI unit second is defined in terms of the
unperturbed transition frequency of the caesium 133 atom.2 The positive direction
of time elapse is defined in the second law of thermodynamics: “The entropy of the
universe tends to a maximum, or in loose terms, energy spreads out over time.” The
increase of the entropy of an isolated system indicates the direction of time.

But what is entropy?3 From a macroscopic point of view, entropy (dented by S)
changes whenever there is a transfer of heat:

∆S =

ˆ t1

t0

−dQ

T (t)
(2)

where T (t) is the temperature when the dissipated (note the negative sign) heat dQ is
made, and the differential change of heat energy dQ is the work done by the friction
force:

dQ = F frictiondx [J]

Q =

ˆ x1

x0

F frictiondx [J]
(3)

where F friction is the friction force and x(t) ∈ R3 is a trajectory in space. Think, if
there is no longer transfer of heat in a universe, does this mean its time stops evolving?

1.2. System and its Block Diagram

“A system is a collection of interconnected parts that form a larger and more complex
whole” [2]. It is widely accepted that a diagram of blocks and connecting arrows

1TSC stands for The Second Coming, the fourth stick figure that was created by Alan Becker.
2https://en.wikipedia.org/wiki/Second
3Fun fact: our yearbook is named “ENTROPY”.

https://en.wikipedia.org/wiki/Second
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is useful for revealing the interconnection of different parts in a complex system. An
example block diagram is shown in Fig. 1. We often call the physical system consisting
of actuator and process, the plant.

Figure 1. Block diagram showing controller, actuator, and process [2].

Generally speaking, in Fig. 1, a block is often representing an ordinary differential
equation (ODE) and an arrow stands for a math operation that is rather bizarre: the
convolution. We shall discuss convolution later, and for now you can take it for an
integral transform (see Appendix).

1.2.1. Three Different Problems that can be Defined by Using a Block Diagram

Figure 2. Three different problems arise in control systems [2].

There are three problems that can be studied and they are respectively: system iden-
tification problem, simulation problem and control problem [2], depending on which
part of the control system is unknown, as shown in Fig. 2.

1.3. What is Control?

The fundamental idea of control is simply we trying to modify the dynamics of any
natural process, such that its entropy might decrease or increase at a different pace
different from natural evolution.

In the class, we have been playing with those math tools in (1) to study how x(t)
evolves when its dynamics are one of the followings

d

dt
x = 1;

d

dt
x = −1;

d

dt
x = x;

d

dt
x = −x;

d

dt
x = x2;

d

dt
x = −x2 (4)

In math, we tend to want to avoid diverging to infinity. The only system among the
above that always gives a non-diverging response x(t) is

d

dt
x = −x⇒ x (t) = x (0) e−t
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This system evolves with time, and its response x(t) converges towards 0 rather than
infinity.

One important goal of control is to make system response to not diverge to infinity.
We call a non-diverging system a stable system. Stability is a key property of a system
and it implies there is an equilibrium point in the system where the dynamics become
zero d

dtx = 0.
On the contrary, if a system is potential to grow into infinity, the system is unstable.

For example, d
dtx = −x2 is stable if the initial state is satisfies 0 ≤ x(0), but for other

initial state values, the x(t) grows toward infinity as time elapses. We call the range
0 ≤ x(0) that attracts x(0) towards to a equilibrium point the region of attraction
(ROA).

1.3.1. Feedforward Control

To change the dynamics, we need to further append the tool u to any of the former
discussed systems, and it yields, e.g.,

d

dt
x = x2 + u (5)

We want to get rid of the term x2 by modifying the dynamics of the original system.
Assuming x is known, such control goal is simply realized by setting u = −x2 + v,
leading to

d

dt
x = v (6)

where term v is yet designed. This means we are essentially treating the term x2 as
a disturbance to the system, and u is able to cancel the effect of such disturbance.
Therefore, control is subjective: y2 are essential the dynamics of the original system
but it is treated as (internal) disturbance.

1.3.2. Proportional Control

We can further modify the dynamics (6) by designing v to be v = −x to get that
nicely behaving system d

dtx = −x again. One might complain that x(t) = e−t is
converging too slow. To make the response faster, we can simply let v = −KPx, with
KP ∈ R+. This is known as proportional control. Proportional control is the basic
form of negative feedback control. Feedback refers to the practice to feed the system
state (often measured) back to the control input u. Negative puts an emphasis that
the modified dynamics v must make sure the sign of the exponent of the response x(t)
should be negative, e.g., x(t) = e−KP t.

1.3.3. Model Predictive Control

The control input u is applied to an actual system by an actuator. The drawback of
the proportional control is that it does not take full ability of the actuator, and the
control input is proportional to the system state, requiring the actuator is able to
produce an analog signal. In practice, however, the actuator is very likely to operate
in a ON-OFF fashion. In this case, it makes more sense if we figure out how long the
actuator should be turned ON.
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For example, let’s assume a motor’s speed is x(0) = 10 rad/s at t = 0 s. We are
asked to make the motor speed to go up to x(1) = 100 rad/s at t = 1 s. Let’s assume
when the actuator is ON, the control input is 100 s−2, which cannot be changed. In
this case, the just-exact control input is defined by a Heaviside step function as follows

v = 100 [1 (t)− 1 (t− 0.9)] (7)

The solution to this control system is

d

dt
x = v

⇒ x = 100

ˆ t

0
[1 (t)− 1 (t− 0.9)] dt

(8)

which states that x(t) will ramp up between [0, 0 : 9] s, as shown in Fig. 1b. Applying

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Time [s]

0

25

50

75

100

10
0*

(1
(t)

1(
t

0.
9)

)

(a) Excitation in (7)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Time [s]

0

25

50

75

100

x(
t)

(b) Response in (8)

Figure 3. Simple example showing the spirit of model predictive control.

control effort in a period of time just enough to exactly reach the goal describes the
spirit of model predictive control. The exact amount of excitation applied to the system
is predicted and calculated based on the model of the system.

1.3.4. Sliding Mode Control

Another idea to apply maximum control effort is the sliding mode control (SMC). In
simple terms, the control law is designed to be a signum function as follows

v = 100 sgn (100− x)

or

v =

{
100, if 100− x > 0

−100, others

A similar idea is the bang-bang control or hysteresis control, which sets a region of
no control instead of the signum function:

v =

{
100, if 100− x > 3

−100, if 100− x < −3

which gives a non-responsive region having width of 6 rad/s around the goal, 100 rad/s.
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1.3.5. Dynamic Control / Integral Control / Adaptive Control

If we view the control input v as the output of some dynamical system: d
dtv = f(x),

the resulting control law is called dynamic control.
A well known dynamic control is the integral control, which simply designs v as an

integral of the control error:

v = KI

ˆ t

0
(100− x) dt

or in a form of dynamical system:

d

dt
v = KI (100− x)

where KI ∈ R+.
Adaptive control also belongs to dynamic control, but with some further consider-

ations for guaranteed stability.

1.3.6. Linear Quadratic Regulator (LQR)

For a simple first-order linear system:

d

dt
x = ax

the LQR is

u = −(a+
√
a2 + ψ)x

with the tuning button ψ ∈ R. The optimization objective is

JLQR =

ˆ tf

0

[
ψx(t)2 + u2

]
dt

where tf is the final time to end the control. The continuous-time differential Riccati
equation will be needed to derive the control law [3, Section 22.4].

1.3.7. Using States as Control Input

For systems of higher order than first-order, using states as control input is a principle
that is at the center of control. The idea has been used in (integral) back-stepping
control and input-output linearizing control. In addition, the nested loop control is
designed based on the same principle, but it often assumes the control transients of
the inner loop are short enough.

1.4. Book Recommendations and Other Resources

In addition to the books I recommended in the class, please see others’ opinions on what
control theory is about. Among them, I recommend to watch Brian Douglas’s video on
Mar. 2nd, 2015 (https://www.youtube.com/watch?v=oBc_BHxw78s): “Why

https://www.youtube.com/watch?v=oBc_BHxw78s
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Learn Control Theory”. To summarize his video, control theory is widely used in
electrical engineering, mechanical engineering, communication engineering, civil engi-
neering, industrial engineering, and aerospace engineering. Control theory is essentially
a subject of applied mathematics, it is building models of your systems, it is simu-
lating model to make predictions, it is to understand dynamics and how it interact
with environment, it is filtering noises and rejecting disturbances, and it is selecting,
building and testing hardware to make sure it has expected performance in an unex-
pected environment. It is a tool that every engineer should learn to understand his/her
system.
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2. Mathematic Model of Linear Systems

This chapter, however, does not treat control like what we have done (in time domain)
in Chapter 1, as most of those controlled dynamics can only be solved using numerical
integrations.

Figure 4. Allowable operations for building a linear time-invariant (LTI) system.

In order to potentially have a closed form solution, we need to study a class of
simple systems originated from physics laws. From their governing ODEs, we realize
they happen to only consist of the linear operations shown in Fig. 4, hence they are
called linear systems. Linear system allows us to apply a series of impulse excitations
one by one, and then sum up those impulse responses to produce the output of any
arbitrary input, supposing an arbitrary input function can be represented as a series
of impulse functions.

2.1. Across Variable and Through Variable

Across variable and through variables are concepts proposed in [1] for helping take
abstract of various different physics systems. They are not very useful in this course,
and it is sufficient to pay attention to the force-current analogy and force-voltage
analogy.

2.2. Analogue Systems and Analogue Variables [1, Section 2.2]

We are going to show that systems that stem from different physics laws end up being
very analogue in terms their dynamical equations.

2.2.1. Force-current analogy

The analogy between a damper-spring-mass system and RLC circuit is called force-
current analogy.

Kirchhoff’s current law states that all currents owing into a node must be equal to
the current flowing out of it (as a consequence of charge conservation):

v

R
+ C

dv

dt
+

1

L

ˆ t

0
vdt = i (t)

where symbols are defined in [1, Fig. 2.3].
From [1, Fig. 2.2]. Newtonian mechanics state that the change of momentum equals
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to the sum of forces applied to the particle with mass M :

M
d2

dt2
y + b

d

dt
y + ky = F (t)

where M is mass, b is friction/viscous coefficient, k is a spring constant, and F is the
force applied to the system. Think which location has been used to define y = 0?4

2.2.2. Force-voltage analogy

Table 1. Analogy between a particle and a charge.

Particle Charge
r Q

v = dr
dt i = dQ

dt
m L

p = mv ψ = Li

F = mdv
dt e = Ldi

dt

The analogy between Newton’s second law of motion and Faraday’s law of induction
is called force-current analogy, which implies there is an analogy between a particle
and a charge, as summarized in Table 1:

• particle’s position r and charge (that passes through a cross-sectional area) Q;
• velocity v and current i;
• inertial mass m and inductance L;
• momentum p and flux linkage ψ;
• force F and voltage e.

Furthermore, the active power in electrical circuit corresponds to the increase in ve-
locity amplitude, and the reactive power corresponds to the change in the direction of
the velocity (note velocity should be a vector in space).

2.3. System as Excitation and Response

Alternative to the math equations like ODEs, a system can also be solely defined by its
inputs and outputs. This fact actually serves as the foundation of system identification.
Input and output are also known as excitation and response.

For the RLC system we just introduced, when the excitation current is described
by a Heaviside step function:

i(t) = 1(t) =

{
1, t ≥ 0

0, others
(9)

its response is

v (t) = K2e−α2t cos (β2t+ φ2)

whose time domain plot is shown in Fig. 5.5

4It is the equilibrium position of the spring where the force ky = 0.
5Think why step current excitation produces an impulse response?
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Figure 5. Impulse response of parallel RLC circuit when step current is applied [1, FIGURE 2.3].

For the damper-spring-mass system to have the same response (in waveform), we
need to apply an excitation force as follows:

F (t) =
d

dt
1(t) = δ(t) (10)

which is known as the Dirac delta function. The Dirac delta function is also known as
impulse function. It is equivalent to we using a hammer to apply an impact force of
1 N to the system.

Figure 6. Dirac delta function properties [2].

The Dirac delta function is not a regular function, and some key properties are
elaborated in Fig. 6. Recall Heaviside step function is the integral of Dirac delta
function, and its derivative of 1(t) at t = 0 is infinite. This infinite derivative does not
make Heaviside step function to grow into an arbitrary large number, implying such
an “impulse” has finite amount of energy.

2.3.1. Impulse Response

Impulse response is the response of an ODE when an impulse function δ(t) is applied
as input. We will see very soon why impulse response is fully representative of an
ODE in time-domain. In other words, the ODE and impulse response are equivalent
representations of a linear system.

Note even though the response in Fig. 5 is a result of applying a step current in
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(9), we still call it the impulse response of this RLC circuit, because the current is the
input to a differential-and-integral equation rather than an ODE.

2.3.2. System as Operator

With the concept of impulse response, we are now ready to view system as an operator
f(·). In simple terms, the system transfers the impulse excitation δ(t) into another
signal x(t) = f(δ(t)). In general case, when the input is a signal u(t), the system’s
output becomes x(t) = f(u(t)). We are going to show f(u(t)) is a convolution of u(t)
and f(δ(t)).

An operator should have no memory, otherwise the output will become dependent
on the operator’s internal states. For example, the impulse response in Fig. 5 would
be different, if the capacitor is already charged to some extent at t = 0 s. Therefore,
to view system as an operator, we need to assume the initial conditions of the system
states to be null: v(t) = d

dtv(t) = 0, i.e., capacitor voltage and inductance current
should be equal to zero.

2.3.3. Signal Analysis

Any signal can be decomposed into a series of delta functions:

u (t) ≈
+∞∑

k=−∞
[u (k∆t) ∆t] δ (t− k∆t) (11)

with k an integer, where ∆t is the sampling period. Motivation is from Calculus: the
integral of a signal is the sum of rectangle area under the curve, so we can view any
signal x(t) as a bunch of thin rectangles with different heights x(k∆t) but the same
width ∆t. A visualization of (11) is shown in Fig. 7.

Figure 7. Signal can be equivalent represented using delta function times area under curve.

Since system can be viewed as an operator f(·), applying the operator to both sides
of (11) yields

x (t) = f (u (t)) ≈
+∞∑

k=−∞
f (u (k∆t) δ (t− k∆t)) (12)

which shows that the system response of some arbitrary input function u(t) can be
approximately calculated as the sum of a series of impulse responses of delta function
excitation of different amplitude of u(k∆t).

We need some convenient property for the system operator f(·) so that we can
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extract the coefficient outside of the operator f(·) to get following results:

x (t) = f (u (t)) ≈
+∞∑

k=−∞
f (u (k∆t) δ (t− k∆t)) =

+∞∑
k=−∞

u (k∆t) f (δ (t− k∆t))

If this holds, we can safely say that a system can be described by its impulse response
f (δ (t− 0)). The operator that makes the above result valid is known as the LTI
operator, which has been summarized in Fig. 4 before. System’s response to any input
can be derived as a sum of a series scaled impulse responses, as shown in Fig. 8. This is
why impulse response is important because an arbitrary response can be represented
as the sum of a series of impulse responses.

Figure 8. Apply the input slice by slice and sum up the resulting impulse response to get final response,

where f in figure is input u in text, g(·) in figure is impulse response f(δ(·)) in text, and dτ in figure is ∆t in

text.

2.4. Convolution

Finally, let’s formalize the signal decomposition (11) by performing the limit ∆t→ 0,
so sum becomes an integral

(11)
∆t→0
=⇒ u (t) =

ˆ +∞

−∞
u (τ) δ (t− τ) dτ , conv (u (t) , δ (t)) (13)

where k∆t has been replaced with the variable τ over which the integral (i.e., the sum)
is performed, and ∆t has been replaced with the differential of time, dt. The integrand
in (13) simply means to pick the value of signal u(t) at t = τ .

Now we are ready to define the math operation that an arrow in a block diagram
(e.g., Fig. 1) represents. An arrow in a block diagram applies a system’s response to
another system as input in order to get its response. Therefore, the arrow convolutes
the previous block’s output with the impulse response of the next block.

As another useful property of convolution, a signal u(t) convolutes with the delta
function δ(t− t1) would experience a time shift and becomes u(t− t1):

conv (u (t) , δ (t− t1)) = u (t− t1) (14)

In our experiment class, you will find that multiplying two polynomials together can
be accomplished by performing the discrete convolution of the polynomial coefficients
[2]:

1 f = [1 2 3];
2 g = [3 0 1];
3 w = conv(f,g)
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4 It prints out: w = 3 6 10 2 3

2.5. Linear System

Linear system is a wider concept than linear time-invariant (LTI) system. If a system
satisfies homogeneity and superposition, it is a linear system. See Fig. 9 for an intuitive
definition.

Figure 9. Homogeneity and superposition are two necessary properties of a linear system [2].

If a linear system further sanctifies the property of time-invariance (see Fig. 10), it
is then called an LTI system.

Figure 10. Time invariance states the system should give the same response regardless of the time when

excitation is applied [2].

LTI results in sinusoidal fidelity, meaning any sinusoidal signal passing through
a system results in a new sinusoidal signal of the same frequency (with a gain in
amplitude and a shift in phase). To prove the sinusoidal fidelity, we need to learn to
define the frequency response of a transfer function, or in other words, learn solving
ODE using Laplace transform, see [1, Chapter 8]
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3. Laplace Transform and Transfer Function

Watch Brian Douglas “What are Transfer Functions?”6

In Section 2.2, those derived ODEs are described using LTI operations shown in
(4). We are now ready to have a different representation of those LTI systems, which
is the transfer function. Transfer function is the output-input ratio after the Laplace
transform is applied to an ODE with zero initial conditions. Alternatively, transfer
function is defined as the Laplace transform of the impulse response of a system with
zero initial conditions.

3.1. Laplace Transform

Figure 11. Screenshot of the Laplace transform pairs from Appendix of [1].

In practice, Laplace transform is as simple as a look-up table, see the screenshot in
Fig. 11. The minimum requirement is to remember the Laplace transform of

δ(t), 1(t), t, tk, e−at, sinωt, cosωt, e−at sinωt, e−at cosωt

where k is integer and a, ω ∈ R.
Laplace transform can be used to transform an ODE into an algebraic equation with

ODE’s initial conditions. For example, the damper-spring-mass system is transformed

6https://ww2.mathworks.cn/en/videos/what-are-transfer-functions-1661846920974.html

https://ww2.mathworks.cn/en/videos/what-are-transfer-functions-1661846920974.html
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into:

L
[
M

d2

dt2
y + b

d

dt
y + ky

]
= L [F (t)]

M

(
s2Y (s)− sy

(
0−
)
− dy

dt

(
0−
))

+ b
(
sY (s)− y

(
0−
))

+ kY (s) = F (s)

(15)

where y (0−) and dy
dt (0−) are called the initial conditions of this second-order ODE.

From (15), assuming y (0−) = y0 and dy
dt (0−) = 0 and solving for Y (s) yield

Y (s) =
(Ms+ b)y0 + F (s)

Ms2 + bs+ k
=
N(s)

D(s)
(16)

which can be transformed into time-domain via inverse Laplace transform. When
F (s) = 0 and y0 6= 0, one possible (depending on values of M, b, k) impulse response
is:

y (t) = L−1 [Y (s)] = K1e−α1t sin (β1t+ φ1)

where α1 and β1 are constants associated with the parameters of the system. When
y0 = 0 and F (t) = δ(t), the solution shares a similar form but has a different initial
phase angle than φ1. Having more than one excitation channels makes the analysis
of system response sometimes confusing, and we should stick with one input channel,
preferably the input signal F (t).

3.2. Transfer Function

Assuming zero initial conditions, we can derive the ratio between system output and
system input for the damper-spring-mass system

T (s) =
Y (s)

F (s)
=

1

Ms2 + bs+ k
=
N(s)

D(s)
(17)

where T (s) is the transfer function from input F (s) to output Y (s). Neglecting initial
conditions, the differential operator s can be defined as follows

L
[

d

dt
y (t)

]
= sY (s)− y

(
0−
)

⇒ s ,
d

dt

In the sequel, I will always use operator s instead of taking time-derivative d
dt . The

time-domain and s-domain functions are indicated by its variable, e.g., y(t) and Y (s),
Ω(t) and Ω(s).

3.2.1. Relation between Impulse Function and Transfer Function

Note the Laplace transform of the impulse function is 1 = L[δ(t)]. Therefore, in s-
domain, transfer function is the same as the system’s impulse response. In other words,
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signal and system become the same concept in s-domain.

3.2.2. Pole, Zero, and Gain.

Pole is defined as the s-value that makes a transfer function to become infinity or that
makes the denominator polynomial D(s) = 0.

Zero is defined as the s-value that makes a transfer function to become zero or that
makes the numerator polynomial N(s) = 0.

Gain is defined as the transfer function value when s = 0 is substituted.

3.2.3. Strictly Proper

Consider a transfer function T (s) = Num(s)
Den(s) . If the order of the polynomial Den(s) is

equal or higher than that of Num(s), we say the transfer function is proper [4]. In
other words, define

T (∞) = lim
s→∞

T (s)

we have 0 < |T (∞)| < ∞ for a proper system, and we have 0 = T (∞) for a strictly
proper system.

The strictly proper function can be defined as [4]

Tsp(s) = T (s)− T (∞)

3.3. Block Diagram in s-Domain

We have mentioned in Section 1.2 that the block in a block diagram is often an ODE,
and the arrow in a block diagram is convolution.

The block is a transfer function in s-domain, and the arrow between two connected
blocks are multiplication in s-domain.

A number of blocks in a block diagram can be reduced by applying the [1, Table 2.5
]. The fundamental principle, ddd

In my opinion, block diagram has one key advantage over the O.D.E.. In a block
diagram, it is not necessary to give a name to all state variables, and it becomes quite
easy to pay attention to those state variables that matter.

3.4. Signal Flow Diagram and Mason’s Signal-Flow Gain Formula*

Signal flow diagram is only meaningful when the block diagram has too many nodes.
In that case, Mason’s signal-flow gain formula can be applied to derive the linear
dependence between two independent variables in the signal flow graph. While in
practical scenarios as far as this course concerns, signal flow graph is the same as
block diagram, so it is safe to skip it in this course.

4. Feedback Control System Characteristics

By making 1
s a block in a block diagram, we realize the converging response system

sx = −x forms a loop, as shown in Fig. 12. This motivates us that a closed loop
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Figure 12. Motivation: the converging response system sx = −x forms a loop.

might be what we desire for designing a control system that does not have diverging
response, which, in most cases, is true.

This section is going to answer why feedback control system is better than a system
having no feedback path.

4.1. Open Loop and Closed Loop

Our goal is to make state x(t) follow reference signal r(t).

 

Figure 13. Open loop system.

For an open loop control system like the one in Fig. 13, the full transfer function
of the control system is X

R = CP . Putting R(s) = X(s) requires CP = 1 or C(s) =
P (s)−1. This kind of controller is known as the inverse system controller, which often
is not realizable in practice.

Figure 14. Closed loop system.

As shown in Fig. 14, a closed loop system, on the other hand, gives X
R = CP

1+CPH .
Note CP is a complex number in nature. As long as |CP | is large enough such that
|CP | � 1, we have X ≈ R. One realizes that the closed loop control has non-zero
error E(s) , R(s)−X(s) = 1

1+CP in nature, unless |CP | =∞.

4.2. Practical Implementation of the Inverted Model Controller*

It is interesting to note that a practical way to implement Fig. 13 with C(s) = P (s)−1

is to use a feedback loop inside the controller, as shown in Fig. 15 [3]. If we design
C(s) such that the error signal E(s) entering C(s) is close to zero, the inverted model
control law is approximately implemented.
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Figure 15. Inverted model control implemented with a feedback loop using an internal model of the plant.

Since there is no sensor hardware needed to be applied at the actual plant. The
control system is said to be an open loop one. In other words, the controller C(s) has
no idea what is going on inside the actual plant. For instance, it is possible the actual
plant has been malfunctioning or broken, but there is no way for our controller C(s)
to become aware of that fact using an open loop control system. Moreover, there is
no way to reject the effect of the disturbance D(s) to the plant, using an open loop
control system in Fig. 15.

4.3. Model of DC Motor

Example open loop and closed loop system with a motor can be found in FIGURE
4.12 in [1].

All motor is AC. Even though the voltage applied to the motor can be DC at its
terminals, the conductors along the air gap of the motor must carrying an alternating
current to maintain a steady torque. In order to provide an alternating current to the
conductors, carbon brushes or power electronic devices are necessary to a motor, which
realize mechanical and electronic commutation for the current-carrying conductors,
respectively.

Assuming perfect conductor commutation, the dc motor consists of a first-order elec-
trical subsystem and a first-order mechanical subsystem. Recall the analogy between
the two subsystems is called force-voltage analogy.

4.3.1. Second Order Model of a DC Motor

See FIGURE 4.28 and 4.29 in [1] for a full model of a dc motor when the coil inertia
is not neglectable as compared with the rotor inertia. In other words, the disk read
head is light in weight. We will address second order plant later.

4.3.2. Simplified Model of a DC Motor

For this chapter, let’s consider an simple example of industrial application, and com-
pare the differences when open loop control and closed loop control. The steel rolling
mill shown in Fig. 16 [1, FIGURE 4.7] has a heavy rotor, such that the pole of the coil
dynamics is far away from the pole of the rotor dynamics, implying that the former
can be neglected with limited influence on accuracy. In other words, we can say the
mechanical pole dominates the electrical pole. As a consequence, in s-domain, the dc
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Figure 16. Steel rolling mill control system.

motor with heavy rotor can be modelled as a first-order transfer function P (s):

P (s) =
Ω (s)

V (s)
=

gm
τms+ 1

where Ω (s) is the angular speed, V (s) is the voltage applied to the motor armature
terminal, gm is the gain and τm is the time constant of the mechanical system.

The block diagram of a simplified DC motor model is shown in [1, FIGURE 4.8],
which is a closed loop and the loop reduction T (s) = X(s)/R(s) = CP/(1 + CPH)
still works, but it is by definition not a closed loop control system. For a system to be
feedback controlled, it has to equip some kind of sensor hardwares.

4.4. Transient Response Comparison between Open and Closed Loop
Control

(todo: missing block diagram)

When the expression of a response x(t) has nonzero exponential terms, it is then
called a transient response. Closed loop control is able to modify the pole of the closed
loop transfer function, so its transient response can be modified to have a larger
exponent. To see this, let’s compare between the open loop controlled dc motor and
the closed loop controlled one.

• The transfer function from reference signal to angular speed using an open loop
control is:

T (s) =
Ω (s)

R (s)
= C (s)P (s) = KP

gm
τms+ 1

which has a real-valued pole λ1 = − 1
τm

.
• The transfer function from reference signal to angular speed using an closed loop

control is:

T (s) =
Ω (s)

R (s)
=

C (s)P (s)

1 + C (s)P (s)
=

KP
gm

τms+1

1 +KP
gm

τms+1

=
KP gm

τms+ 1 +KP gm

which has a real-valued pole λ1 = −1+KP gm
τm

.
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Their time-domain solutions of impulse excitation share the form of

Ω(t) = L−1 {T (s)× L [δ (t)]} = KP gmeλ1t

Who has a larger λ1 has a faster transient response.
Their s-domain step responses can be derived by substituting R(s) = 1/s:

Ω (s) = T (s)× L [1 (t)] =

{
KP gm
τms+1

1
s , open loop

KP gm
τms+1+KP gm

1
s , closed loop

=
g1

s− λ1

1

s

g1 =
KP gm
τm

, λ1 =

{
−1
τm
, open loop

−1+KP gm
τm

, closed loop

For open loop control, we have speed response

Ω (s) = T (s)× L [1 (t)] =
g1

s− λ1

1

s
=
A

s
− B

s− λ1
=
As−Aλ1 − sB
s (s− λ1)

=
g1

−λ1

(
1

s
− 1

s− λ1

)
⇒
{

A = B
−Aλ1 = g1

⇒ A = B =
g1

−λ1

which gives a time-domain response as

Ω (t) =
g1

−λ1

(
1− eλ1t

)
See FIGURE 4.13 to have a visualization of the transient response comparison.

4.5. Steady State Error Comparison between Open and Closed Loop
Control

With the step response available as Ω (t) = g1
−λ1

(
1− eλ1t

)
, we can get steady state

value by setting t =∞ to get

Ω (∞) =
g1

−λ1

(
1− eλ1∞

)
=

g1

−λ1

which is equivalent to applying final value theorem to the s-domain solution:

Ω (t) |t=∞ = lim
s→0

sΩ (s) =
g1

−λ1
s

(
1

s
− 1

s− λ1

)
=

g1

−λ1

4.5.1. Steady State Error of a Step Response

Recall our goal is to make state x(t) = Ω(t) follow reference signal r(t). It is convenient
to evaluate the error signal e(t) = r(t)− x(t) instead. Its s-domain step response is:

E (s) = R (s)−Ω (s) =
1

s
− g1

−λ1

(
1

s
− 1

s− λ1

)
(18)
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The steady state value of the error signal is

e (∞) = lim
s→0

s [R (s)−Ω (s)] = 1− g1

−λ1
(19)

In order to have zero steady state error, such that x = Ω coincides with r(t) when
t approaches infinity, we need to make g1/λ1 = 1. Think what should the controller
C(s) be to make this happen.

For open loop controller, the gain KP must be tuned to ensure g1/λ1 = 1, assuming
the parameters of the system are not time-varying.

For closed loop control, a simple trick to have zero steady state (step) error is to
use a infinity loop gain L(0) = C(0)P (0) =∞. This results in an proportional-integral
(PI) controller C(s) = KP +KI/s with C(0) =∞.

4.5.2. Steady State Error of a Ramp Response

Using the same proportional controller C(s) = KP , the steady state error of a ramp
excitation r(t) = t or R(s) = 1/s2 is

e (∞) = lim
s→0

sE (s) = s

[
1

s2
− g1

−λ1

(
1

s
− 1

s− λ1

)]
=∞ (20)

which means the proportional control cannot follow a ramping reference signal and its
tracking error grows with time.

4.6. Foes

So far, the sole input to our system is the reference signal. Upon analyzing the transient
and steady state performance, it seems the best controller design is to use an infinitely
large gain in controller gain C. In a practice, however, there are at least three input
channels to a closed loop control system, at least one of which prevents us from using
an infinite gain.

There are undesired phenomena present in a control system, including external dis-
turbance [measurement noise n(t) and unknown input d(t)] and internal disturbance
[parameter uncertainty ∆P ], leading to degrade in control performance, e.g., causing
a remarkable steady state error.

The ultimate goal of the control system design is to keep the reference tracking
ability while rejecting all those disturbances to the system. To this end, we need to
first introduce the idea of sensitivity function, in order to describe how sensitive to
disturbance is our control system.

4.7. Sensitivity Function

The internal disturbance ∆P (which is often a parameter uncertainty) causes a de-
viation ∆T from T . A metric that evaluates how much perturbation it causes to our
system is the sensitivity function, defined by

S =
∆T (s) /T (s)

∆P (s) /P (s)
(21)
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where the deviation can be calculated as per definition:

∆T (s) =
C (P + ∆P )

1 + C (P + ∆P )
− CP

1 + CP

In the limit, small incremental changes leads to following de
nition:

STP =
∂T (s) /T (s)

∂P (s) /P (s)
=
∂ lnT (s)

∂ lnP (s)
(22)

where the following calculus relation has been substituted:

dx

x
= d lnx ⇔

ˆ
dx

x
= lnx

When control system transfer function is T (s) = CP
1+CP , the sensitivity function is

STP =
1

1 + CP
(23)

When control system transfer function is T (s) = CP , the sensitivity function is

STP = 1 (24)

This is the second advantage of using a closed loop control system. The amplitude
of the sensitivity function is subject to a factor that is less than 1. Also, it is important
to use a negative feedback loop, otherwise the denominator in (23) becomes 1−CP ,
making |STP | > 1.

In most cases, the transfer function T (s) is a rational fraction:

T (s;α) =
N (s;α)

D (s;α)

where α is a parameter that experiences variation, and N and D are numerator and
denominator polynomials in s. As a result, T (s)’s sensitivity with respect to parameter
α becomes

STα =
∂ ln T

∂ lnα
=
∂ ln N

∂ lnα

∣∣∣∣
α=α0

− ∂ ln D

∂ lnα

∣∣∣∣
α=α0

= SNα − SDα

where α0 is the nominal value of α.

4.8. Gang of Six

Watch video of Douglas “Gang of Six”.7

7https://ww2.mathworks.cn/en/videos/control-systems-in-practice-part-8-the-gang-of-six-in-control-theory-1578480109868.
html

https://ww2.mathworks.cn/en/videos/control-systems-in-practice-part-8-the-gang-of-six-in-control-theory-1578480109868.html
https://ww2.mathworks.cn/en/videos/control-systems-in-practice-part-8-the-gang-of-six-in-control-theory-1578480109868.html
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Figure 17. Closed loop system with three input channels.

The closed-loop control system shown in Fig. 17 has considered all three different
foes that perturb the control performance. Assuming H(s) = 1 in Fig. 17, we can derive
the following relationships among the input signals and state/output/input/error:8

X =
CP

1 + CP
FR+

P

1 + CP
D − CP

1 + CP
N (25a)

Y =
CP

1 + CP
FR+

P

1 + CP
D +

1

1 + CP
N (25b)

U =
C

1 + CP
FR− CP

1 + CP
D − C

1 + CP
N (25c)

E =
1

1 + CP
FR− 1P

1 + CP
D − 1

1 + CP
N (25d)

When F (s) = 1, the gang of six is reduced as gang of four. We define loop gain as
L , CP , and the definitions of the four gang members are now in order:

• Sensitivity function S = 1/(1 + L).
• Complementary sensitivity function is 1− S.
• Disturbance sensitivity function is PS.
• Noise sensitivity function is CS.

See also Fig. 18.

4.9. Error Signal Analysis

Assuming feedforward block F = 1, (25d) is rewritten in terms of sensitivity function
S as follows:

E =
1

1 + L
R− P

1 + L
D +

L

1 + L
N

= S ×R− PS ×D + (1− S)×N
(26)

8In case you wonder how the expression for U is derived (because it appears to be different from the rest):

U = CE = C (FR− Y )

= C

(
FR−

CP

1 + CP
FR−

P

1 + CP
D −

1

1 + CP
N

)
=

(
C

1 + CP
FR−

CP

1 + CP
D −

C

1 + CP
N

)
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Figure 18. Gang of four by Brian Douglas (Youtube: b8v8scghh8)

4.10. Disturbance Rejection

Using the principle of superposition, let’s analyze the effect of external disturbance
input D by putting R = N = 0:

E(s) = − P

1 + CP
D = − P

1 + L
D = −PS ×D (27)

The disturbance will be rejected if we use a “large” loop gain. Or in rigorous terms,
disturbance rejection occurs whenever s is making the gain |S(s)P (s)| small enough.

4.11. Reference Tracking

The error due to change in reference is

E(s) = S ×R =
1

1 + L
×R (28)

which suggests that “large” loop gain also minimizes the tracking error.

4.12. Noise Attenuation

The complementary sensitivity function 1− S shows how noise is attenuated in error.
Unfortunately, the error excited by noise N(s)

E(s) = (1− S)×N(s) =
L

1 + L
×N(s) (29)

b8v8scghh8
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is less attenuated when a “large” loop gain |L| is used. We conclude that there is a
compromise between the reference tracking and noise attenuation., because

S(s) + (1− S(s)) ≡ 1 (30)

4.13. Sensitivity to Parameter Variation

Uncertainty ∆P affects all three channels of the input. We will take reference input
for illustration. Assume D = N = 0, and substitute P + ∆P for P in error analysis
(26) yields

E + ∆E =
1

1 + C (P + ∆P )
R

⇒ ∆E =

(
1

1 + C (P + ∆P )
− 1

1 + CP

)
R

≈ 1

1 + CP

∆P

P
R

= S
∆P

P
R

(31)

which reveals the reason why S is called as sensitivity function.

4.14. Q & A

Some questions and answers are listed as a brief summary.
Q1: What is a transfer function?
A1: A transfer function is

• a polynomial fraction with a complex variable s ∈ C;
• an LTI system;
• the system’s impulse response in s-domain.
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5. Feedback Control System Performance

Watch Brian Douglas “The Step Response”9

This chapter develops performance metric as design requirements for feedback con-
trol system design.

5.1. Test signals

Standard test signals include δ(t), 1(t), t, t2, and sinωt.

5.2. Standard Second Order System

Closed loop transfer function T (s)

T (s) =
Y (s)

R(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(32)

is called the standard second order system, where ωn is natural frequency, and ζ is
the damping ratio. “Standard” puts an emphasis on the absence of zeros. Can you
guess what system’s open loop transfer function is?10

The characteristic equation of transfer function T (s) is its denominator polynomial:

s2 + 2ζωns+ ω2
n = 0 (33)

whose roots are

(33)⇒ s = −ζωn ± ωn
√
ζ2 − 1

, −τ−1 ± ωnβ
(34)

where β ,
√
ζ2 − 1, and τ is the time constant defined as

τ ,
1

ζωn
(35)

which suggests the decaying exponential term in the transient response has an expo-
nent of −t/τ .

The impulse response of a second order system can be obtained using inverse Laplace
transform:

L−1

[
ω2
n

s2 + 2ζωns+ ω2
n

]
=

ωn√
1− ζ2

e−ζωnt sin
(
ωn
√

1− ζ2t
)
, only when ζ < 1 (36)

as shown in Fig. 19a. Note the y-axis is re-scaled as y/ωn and t-axis is re-scaled as
ωnt. Re-scaling the axes will keep the waveform invariant when ωn changes.

9https://ww2.mathworks.cn/en/videos/control-systems-in-practice-part-9-the-step-response-1593067191882.
html
10Hint: divide both numerator and denominator with s2 + 2ζωns.

https://ww2.mathworks.cn/en/videos/control-systems-in-practice-part-9-the-step-response-1593067191882.html
https://ww2.mathworks.cn/en/videos/control-systems-in-practice-part-9-the-step-response-1593067191882.html
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(a) Impulse responses. (b) Step responses.

Figure 19. Responses of a standard second order system [1].

The step response of a second order system is

L−1

[
ω2
n

s2 + 2ζωns+ ω2
n

1

s

]
= 1− 1√

1− ζ2
e−ζωnt sin

(
ωn
√

1− ζ2t+ cos−1 ζ
)
, ζ < 1

(37)
as shown in Fig. 19b. Note t-axis is re-scaled as ωnt, implying that the waveform
shape of the response is not dependent on ωn. To see this, you can play with the GUI
I made with two sliders for adjusting the values of ωn and ζ, using python packages
DearPyGUI and python-control.11

From Fig. 19, responses having higher values than final value y(∞) is said to have
an overshoot thus underdamped. If the peak of the response is less than the final
value y(∞), then there is no overshoot and the system is said to be overdamped.
The system is said critically damped when the peak value is equal to the final value.

When ζ >= 1, the second order system is reduced to two first order systems. A
general solution can be written as follows: todo

5.3. Performance Metrics

The swiftness of the response is measured by the rise time Tr and the peak time Tp [1].
The 0–100% rise time Tr is mainly used for underdamped system with an overshoot.
The 10–90% rise time Tr1 becomes useful for overdamped system because the time
spent in 90–100% would be remarkably long for an overdamped system, which is
unfair to be accounted for rising time.

The settling time, Ts, is defined as the time required for the system to settle within
a certain percentage δ of the input amplitude (i.e., the command or reference) [1].
In [1], settling time is approximately estimated from

e−ζωnTs < 2% (38)

11https://github.com/horychen/ee160/blob/master/step_response_visual.py

https://github.com/horychen/ee160/blob/master/step_response_visual.py
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Figure 20. Graphical definitions of the performance metrics in a transient step response.
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Figure 21. Settling time Ts versus damping ratio ζ.

Premise: step response and standard second order system.

which gives an estimated settling time that is only related to the product of ζ and ωn:

Ts =
4

ζωn
(39)

when ζ is not too large. But how large is too large? To have a feel about this, I have
used a python snippet to visualize the comparison between the settling time read from
graph (results of simulation) and the estimated one Ts = 4

ζωn
. The results are shown

in Fig. 21. The code snippet is listed here.

1 import control
2 from pylab import np, plt, mpl
3 mpl.rc(’font’, family=’Times New Roman’, size=10.0)
4 mpl.rcParams[’mathtext.fontset’] = ’stix’
5 mpl.rc(’legend’, fontsize=10)
6 omega_n = 1.0
7 def get_attr(zeta, key=’SettlingTime’):
8 T = control.TransferFunction([omega_n ** 2], [1, 2 * zeta *

omega_n, omega_n ** 2])
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9 return control.step_info(T)[’SettlingTime’]
10 zeta_list = np.concatenate(( np.arange(0.0, 0.2, 0.01), np.arange

(0.2, 5, 0.2) ))
11 approximated_settling_time_list = [4 / zeta / omega_n for zeta in

zeta_list]
12 settling_time_list = [get_attr(zeta, key=’SettlingTime’) for zeta

in zeta_list]
13 plt.plot(zeta_list, settling_time_list, ’o’, color=’red’, label=r’

True $T_s$’)
14 plt.plot(zeta_list, approximated_settling_time_list, ’x’, color=’

black’, label=r’Estimated $T_s$’)
15 plt.xlabel(r’Zeta $\zeta$ [1]’)
16 plt.ylabel(r’Settling Time $T_s$ [s]’)
17 plt.title(r’Settling Time $T_s$ vs. Zeta $\zeta$’)
18 plt.grid(); plt.legend(); plt.show()
19 plt.savefig(r’D:\horyc\Desktop\SettlingTimeVsZeta.pdf’, dpi=400,

bbox_inches=’tight’, pad_inches=0)

From Fig. 21, we learn that the Ts estimate in (39) works quite well when ζ < 1.
Therefore, it is safe to say settling time is equal to four times system time constants
4τ = 4/(ζωn) [1].

The steady state error ess can be also read on Fig. 20. The response’s magnitude
at peak time is denoted as Mpt. The percent overshoot (denoted by P.O.) is defined
as

P.O. =
Mpt − fv

fv
× 100%

where fv is the final value of the response. Final value can be calculated as fv =
r(∞)− ess = y(∞), where r(t) is reference signal and ess = e(∞) is error signal.

For an overdamped system with ζ > 1, theoretically speaking, its peak time can only
be read when t→∞. When ζ < 1, the peak time can be calculated by differentiating
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the response y(t) with respect to time to get12

d

dt
y (t) =

d

dt

[
1− 1√

1− ζ2
e−ζωnt sin

(
ωn
√

1− ζ2t+ cos−1 ζ
)]

⇒ d

dt
y (t) =

ωn√
1− ζ2

e−ζωnt sin
(
ωn
√

1− ζ2t
) (40)

Putting (40) to zero and solving the equation yield an exact expression for peak time

0 = ωne−ζωnt
ζ√

1− ζ2
sin
(
ωn
√

1− ζ2t
)

⇒ Tp =
π

ωn
√

1− ζ2
(41)

Since this is a theoretical solution, we can in turn use it to validate the accuracy
of our numerical simulation. To this end, the previous python script for validating
settling time accuracy can be modified to compare between the simulated peak time
and the theoretical one in (41). The results are shown in Fig. 22a. From Fig. 22a, the
simulated peak time becomes quite off when ζ becomes larger than 0.9. Furthermore,
when ζ < 0.3, the zoomed-in plot in Fig. 22b suggests there is remarkable error
in simulated peak time—it becomes almost invariant to ζ. This simulation error is
probably due to large simulation steps.

12The detailed derivation is as follows:

d

dt
y (t) =

d

dt

[
1−

1√
1− ζ2

e−ζωnt sin
(
ωn
√

1− ζ2t+ cos−1 ζ
)]

⇒
d

dt
y (t) = −

(
−ζωn√
1− ζ2

e−ζωnt

)
sin
(
ωn
√

1− ζ2t+ cos−1 ζ
)
−

1√
1− ζ2

e−ζωnt
[
ωn
√

1− ζ2 cos
(
ωn
√

1− ζ2t+ cos−1 ζ
)]

⇒
d

dt
y (t) =

ωn√
1− ζ2

e−ζωnt
{
ζ sin

(
ωn
√

1− ζ2t+ cos−1 ζ
)
−
[√

1− ζ2 cos
(
ωn
√

1− ζ2t+ cos−1 ζ
)]}

⇒
d
dt
y (t)

ωn√
1−ζ2

e−ζωnt
= ζ sin

(
ωn
√

1− ζ2t+ cos−1 ζ
)
−
√

1− ζ2 cos
(
ωn
√

1− ζ2t+ cos−1 ζ
)

⇒
d
dt
y (t)

ωn√
1−ζ2

e−ζωnt
=
√
ζ2 + 1− ζ2 sin

(
ωn
√

1− ζ2t+ cos−1 ζ + arc tan
−
√

1− ζ2

ζ

)

⇒
d
dt
y (t)

ωn√
1−ζ2

e−ζωnt
= sin

(
ωn
√

1− ζ2t+ cos−1 ζ + arc tan
−
√

1− ζ2

ζ

)

note arc tan
−
√

1− ζ2

ζ
= −arc cos

ζ

1

⇒
d
dt
y (t)

ωn√
1−ζ2

e−ζωnt
= sin

(
ωn
√

1− ζ2t+ cos−1 ζ − arc cos
ζ

1

)

⇒
d

dt
y (t) =

ωn√
1− ζ2

e−ζωnt sin
(
ωn
√

1− ζ2t
)



EE160 Fall’23 34 Chen, Jiahao

0.0 0.2 0.4 0.6 0.8
Zeta  [1]

3

4

5

6

7

8

9

10
Pe

ak
 T

im
e 

T p
 [s

]

Peak Time Tp vs. Zeta 

Simulated Tp

Textbook Tp

(a) Zoomed out.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Zeta  [1]

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

Pe
ak

 T
im

e 
T p

 [s
]

Peak Time Tp vs. Zeta 

Simulated Tp

Textbook Tp

(b) Zoomed in.

Figure 22. Peak time Tp versus damping ratio ζ. Premise: step response and standard second order system.

0.0 0.2 0.4 0.6 0.8 1.0
Zeta  [1]

0

20

40

60

80

100

O
ve

rs
ho

ot
 P

.O
. [

%
]

Overshoot P.O. vs. Zeta 

Simulated PO
Textbook PO

Figure 23. Percentage overshoot P.O. versus damping ratio ζ.
Premise: step response and standard second order system.

The peak response at the estimated peak time (41) is

Mpt = 1 + e
−ζ π√

1−ζ2

and the resulting estimated percentage overshoot is

P.O. = 100× e
−ζ π√

1−ζ2 [%]

which is measured from the command r(∞) to the peak magnitude Mpt, thus there is
an minor approximation because the overshoot should be measured from final value
y(∞) to Mpt. One can also validate accuracy of P.O.’s expression using the python
script, and the results are shown in Fig. 23. Note the overshoot is independent on
natural frequency ωn.

Comparing between Fig. 22a and Fig. 23, one realizes that the textbook peak time
Tp and overshoot P.O. are conflicting performance metrics.

Comparing between Fig. 21 and Fig. 23, one finds that settling time Ts and overshoot
P.O. both decrease as damping ratio increases. In a physical system, damping ratio
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often increases when the value of the dissipator component (e.g., damper and resistor)
increases.

As a general design guideline, we need to first pick a ζ value to meet the overshoot
requirement. Then the swiftness of the response can be tuned by picking a reasonable
ωn value.

5.4. Dominant Poles

When a system has a large negative real pole, or a pair of conjugate complex poles
with large negative real part, it is said those poles far away from the imaginary axis
are dominated by other poles that are significantly closer to the imaginary axis. For
example, If the far pole |λ3| ≥ 10|ζωn|, then the following approximation is reasonable

ω2
n

s2 + 2ζωns+ ω2
n

1

(s− λ3)
≈ ω2

n

s2 + 2ζωns+ ω2
n

(42)

The roots of its characteristic equation s2 + 2ζωns+ω2
n = 0 are called dominant roots

of this third order system.
The concept of dominant poles are valid only when there is no zero near the dom-

inant poles. This can be understood by considering an extreme case in which the
zero-pole cancellation occurs. Generally speaking, The poles determine the particular
response modes (i.e., terms of different exponent) that will be present, and the ze-
ros establish the relative weightings of the individual mode functions. In other words,
moving a zero closer to a specific pole will reduce the relative contribution to the
output response [1].

5.5. Complex Plane Root Location and the Transient Response

Since the roots of the characteristic equation are complex number, we can mark them
in the complex plane (a.k.a. s-plane).

A step response of a general transfer function can be converted into a partial frac-
tion expansion [1, Equation (5.21)], which implies that the transient response consists
of terms that have different modes, depending on the location of the characteristic
equation roots.

The relation between complex plane root location and the transient response is
revealed in [1, FIGURE 5.17]:

• Along the real axis of the s-plane from −∞ to 0, the convergence rate of the
response becomes slower and stops to converge when the root is located on the
imaginary axis.
• Along the real axis of the s-plane from 0 to∞, the diverging speed of the response

becomes faster and faster. The response is not bounded by any finite number.
Unbounded response is also said to be unstable.
• Along the imaginary axis of the s-plane from j0 to j∞, the oscillating frequency

of the response becomes higher and higher.



EE160 Fall’23 36 Chen, Jiahao

5.6. System Types in Terms of Steady State Error

See Table 5.2 in [1] for the definition of position error constant, velocity error constant
and acceleration error constant.

5.7. Discussions

Recall the idea that signal and system are the same thing in s-domain. As a result,
the step response of different system does not need to be of similar shape as the step
input. On the other hand, a “regular” step response looking response is not necessarily
excited by a step input. TODO: add examples.

For higher order systems more than two dominant poles, the performance indices
developed in this chapter cannot be directly applied, and the stability becomes the
highest priority.
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6. Stability

A stable system is a dynamic system with a bounded response to a bounded input [1].
This input-output property is known as bounded input and bounded output (BIBO)
stability [4, Theorem 3.1]. There are other definitions of stability.13

A stable response is, therefore, a broader concept that includes converging response
and bounded response. A typical converging response is x(t) = e−t or x(t) = 1− e−t,
and a typical bounded response is x(t) = 0.707 sin(t+π/4). So far, we are only capable
to evaluate the stability of a system by looking at its response with respect to a certain
input, such as impulse, step or sinusoidal excitation.

Since this chapter, we are going to learn a bunch of tools for analyzing the stabil-
ity of a control system, including Routh-Hurwitz stability criterion, root locus, Bode
plot, Nyquist plot, and Nichols plot. Those tools are especially useful for design of a
controller that stabilizes an unstable open loop system. Examples of unstable open
loop systems include air-plane, motorcycle, maglev iron ball, inverted pendulum, and
bipedal robot.

6.1. Stability and Root Locations

See FIGURE 5.17 for a visualization of the relation between root location and response.
There are three stability results depending on the pole locations. [1].

(1) A system is stable if all the poles of the transfer function are in the left hand
s-plane (LHP).

(2) A system is said to have marginal stability, if the characteristic equation has
simple roots14 on the imaginary axis (e.g., s = ±jωu) with all other roots in
the left half-plane. Its steady-state output will be sustained oscillations for a
bounded input as long as the input does not contain a frequency that matches
the roots on imaginary axis. However, if the input contains a sinusoid (which
is bounded) whose frequency (ωu/(2π)) happens to be equal to the magnitude
of the imaginary axis roots, then the system response will be unbounded and
unstable.

(3) For an unstable system, the characteristic equation has at least one root in the
right half of the s-plane or repeated jω roots (i.e., non-simple imaginary roots);
for this case, the output will become unbounded for any input.

6.2. Motivation of a Stability Criterion

When the characteristic equation, i.e., the denominator of a transfer function, is of
low orders, we can resort to the quadratic formula, cubic formula, and quartic formula
to get a closed form solution.15 However, according to Abel–Ruffini theorem16, there
is no closed form solution to polynomial equations of degree five or higher, and an

13Except BIBO stability, we have, e.g., absolute and relative stability, internal stability, Lyapunov stability,

L-2/L-infinity stability, input-to-state stability, asymptotical stability, exponential stability.
14A simple root is a root with a multiplicity of 1. As a counter-example, we can solve the following large order
polynomial equation:

(s+ 5)100 = 0

where the root s = −5 has a multiplicity of 100, thus not a simple root.
15See, e.g., https://en.wikipedia.org/wiki/Quartic_function#General_formula_for_roots
16https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem

https://en.wikipedia.org/wiki/Quartic_function#General_formula_for_roots
https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem
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example of non-solvable equation is

x5 − x− 1 = 0 (43)

To determine the stability of a system, there is in fact no need to solve for the roots
of polynomial, and we only need to determine the signs of the real parts of the roots.
For example, for polynomial equation of degree two

as2 + bs+ c = 0

Vieta’s formulas state that the roots λ1 and λ2 satisfies

λ1 + λ2 = −b/a
λ1λ2 = c/a

As a result, the system must be stable if −b/a < 0 and c/a > 0, which is a sufficient
and necessary condition of stability of this second order polynomial.

For large order polynomial, the Vieta’s formulas become only a necessary condition
for stability [1, Equation (6.5)] A system is unstable, if the polynomial coefficients do
not share a same sign. For example, the following polynomial

s5 + s4 + s3 − s2 + s+ 1 = 0

is not stable. This motivates that: “sign changing indicates instability”.

6.3. The Routh-Hurwitz Stability Criterion

The generalization of using algebraic combinations of the polynomial coefficients to
determining stability, is known as Routh-Hurwitz stability criterion.

The best way to learn how to apply this criterion is not to read the determinant
based definition in the textbook [1]. Instead, watch the three videos on Routh-Hurwitz
stability criterion by Brian Douglas. The screenshot of the first episode is shown in
Fig. 24.17 The table in Fig. 24 is called the Routh array.

The Routh-Hurwitz stability criterion states that

(1) the number of roots of characteristic equation with positive real parts is equal
to the number of changes in sign of the first column of the Routh array;

(2) and there should be no changes in sign in the first column for a stable system,
which is both necessary and sufficient.

6.4. Steps to Determine Stability from Polynomial Coefficients

The full procedure to determine stability from polynomial coefficients are as follows.

S1 Check if all coefficients have the same sign. If not, it is not stable.
S2 Write down Routh array, and if it is a regular case positive and negative numbers

in first column, apply the criterion for determining stability.

17See also https://www.youtube.com/watch?v=WBCZBOB3LCA.

https://www.youtube.com/watch?v=WBCZBOB3LCA
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Figure 24. Routh-Hurwitz criterion for regular cases.

S3 If there is a zero in the first column of row sk of Routh array, we stop. The system
is not stable, but we can do more to learn more about the pole locations about
the system.
S3.1 Special case one (unstable system): at row sk, except the first column,

there are at least one element being nonzero. We can replace the zeros with
a small positive number ε = 0+ at row sk and continuing to write down
Routh array for further information about the number of unstable poles.

S3.2 Special case two (unstable system): at row sk, including the first column,
the rest of elements are all zero. For further information about unstable
roots, an auxiliary polynomial is constructed using the row preceding the
all-zero row. The order of the auxiliary polynomial is always even and in-
dicates the number of symmetrical root pairs. To be more specific, the
auxiliary polynomial contains roots that are symmetrically located about
the origin of the s-plane, e.g.,

(s+ σ)(s− σ),

(s+ jω)(s− jω),

or (s+ σ + jω)(s+ σ − jω)(s− σ + jω)(s− σ − jω)

The all-zero row is replaced with the coefficients of the time derivative
of the auxiliary polynomial. The auxiliary polynomial is a factor of the
characteristic polynomial, which can be verified using polynomial division
as exemplified in Fig. 25.

A step S2 example is

Den (s) =
(
s− 1 + j

√
7
)(

s− 1− j
√

7
)

(s+ 3) = s3 + s2 + 2s+ 24
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Figure 25. Special case two, auxiliary polynomial and polynomial division.

A step S3 or S3.1 example is

Den (s) = s5 + 2s4 + 2s3 + 4s2 + 11s+ 10

A step S3 or S3.2 example is (when K = 8)

Den (s) = s3 + 2s2 + 4s+K

The resulting auxiliary polynomial is A(s) = 2s2 +K.
Another step S3 or S3.2 example is

Den(s) = (s+ 1)(s+ j)(s− j)(s+ j)(s− j) = s5 + s4 + 2s3 + 2s2 + s+ 1

in which special case two occurs twice. Writing down Routh array will end up with
two auxiliary polynomials that are both factors of Den(s):

• one is A1(s) = (s+ j)(s− j)(s+ j)(s− j) at row s4 of Routh array,
• and the other is A2(s) = (s+ j)(s− j) at row s2 of Routh array.

which if there is suggests that a valid Routh array
Can you think of a counter-example to reject “the order of the auxiliary polynomial

is always even and indicates the number of symmetrical root pairs”? There is none,
unless we put the s0 term to zero, e.g.,

Den(s) = s(s+ 1)(s+ j)(s− j)(s+ j)(s− j) = s6 + s5 + 2s4 + 2s3 + s2 + s+ 0

6.5. Strength in Determining BIBO Stability

The advantages using a Routh–Hurwitz criterion is when the transfer function has a
polynomial in its denominator instead of pole explicit form. For example, consider the
following open loop system:

CP (s) =
K

s4 + 10s3 + 35s2 + 50s+ 24
(44)
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Figure 26. Routh-Hurwitz criterion for controller design of a transfer function having implicit poles.

RH criterion can be used for controller design to ensure the BIBO stability, also known
as absolute stability (in contrast to relative stability, soon to be introduced).

In fact, even when the open loop transfer function is provided in its pole explicit
form, the Routh array of the characteristic equation of the closed loop system is
completely different. Consider the welding control example from textbook, where we
can easily find the range of value K such that the following characteristic equation
has stable roots:

Den (s) = 1 + C (s)P (s) = 1 +
K (s+ a)

s+ 1

1

s (s+ 2) (s+ 3)
(45)

where a is a constant.

6.6. Weakness in Determining Relative Stability

In order to have an estimation of how far our roots are away from imaginary axis, we
need to substitute, e.g., s′ = s − σ into the polynomial with σ ∈ R. If the resulting
Routh array in terms of s′ is stable, we then say that the roots are relatively stable
with a margin of at least σ away from the imaginary axis. A characteristic root that is
farther away from the imaginary axis, corresponds to an exponential term that decays
faster, and is said to be more stable.

The issue of using RH criterion for determining relative stability, is that we need
to determine a maximal value of σ in an iterative fashion, by guessing the value of σ
that makes the Routh array in terms of s′ marginally stable.
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6.7. Discussions on Repeated Poles on Imaginary Axis

Consider the following unstable system

Y (s)/U(s) =
1

(s2 + 16)2 (46)

with repeated pole 4j on the imaginary axis. Since 4j is not a simple root, the system
is unstable. We will now discuss from 4 different aspects as follows.

6.7.1. Signal and System are the Same Thing in s-Domain

Since signal and system are the same in s-domain, we can switch our perspective a bit.
Recall the gain for frequency response to sin(4t) is infinity for the following marginally
stable system with simple roots on imaginary axis:

1(
(4j)2 + 16

) =
1

0
=∞

So its frequency response to a sinusoidal input 1

((4j)2+16)
will be unbounded.

6.7.2. Inverse Laplace Transform

Consider the following inverse Laplace transform: (todo: need to double check)

L−1

[
4s

(s2 + 16)2

]
= t sin (4t)

and we conclude the system’s impulse response is unbounded, as t→∞.

6.7.3. Simulation, Modulation, and Envelope

The following MATLAB snippet numerically simulates the impulse, step and frequency
responses of (46).

1 %%
2 close all; cla; clc
3 s = zpk(0, [], 1)
4 % s = zpk(’s’)
5
6 P = 10*16ˆ2 / ((s+10)*(sˆ2+16)ˆ2)
7 % P = 10*16ˆ2 / ((s+10)*(sˆ2+16))
8 subplot(311); step(P)
9 subplot(312); impulse(P)

10
11 t = linspace(0, 10000, 10000);
12 u = sin(3*t);
13 y = lsim(P, u, t);
14 subplot(313); plot(t,y)

The frequency response to sin(3t) is a modulation of two sinusoidals of the natural
frequency 4 rad/s and forcing frequency 3 rad/s, such that the envelop of the response
oscillates at a frequency of 1 rad/s. When the exciting angular speed approaches 4
rad/s, the period of this envelop becomes infinite, hence the response is unbounded.
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6.7.4. Steady State Frequency Response via Zero-Pole Cancellation

The gain for frequency response to sin(4t) is

1(
(4j)2 + 16

)2 =
1

0
=∞

The gain for frequency response to sin(t) is

1(
(1j)2 + 16

)2 =
1

152

which is finite. In order to produce a steady state frequency response for this system
(46), we need to carefully set the initial states so we can avoid any transient response.
In other words, the transient response of (46) is always unstable. To understand how
it is possible to have a bounded response to (46), let’s convert it back to its ODE form

(46)⇒
(
s2 + 16

)2
y = u⇒ s4y + 32y2 + 162y = u

where s has been used as the differential operator d/dt. Recall that when we apply a
Laplace transform to above ODE, we have:(
s4Y − d3y

dt3
(
0−
)
− sd2y

dt2
(
0−
)
− s2 dy

dt

(
0−
)
− s3y

(
0−
))

+32

(
s2Y − sdy

dt

(
0−
)
− s2y

(
0−
))

+162Y = U

With proper initial conditions and no input (U(s) = 0), it is possible to introduce
zeros to the expressions of Y (s) such that proper pole zero cancellation occurs in the
fraction, thus a bounded response becomes possible.

All these efforts of Laplace transform considering initial conditions can be evaluated
by setting s = 0 + jω in frequency response analysis. We shall address the complex
gain of the sinusoidal response in next chapter.

7. Steady State Frequency Response

In the discussions at the end of last chapter, the frequency response has been used to
find the exact exciting frequency that leads to an unbounded output of a marginally
stable system. However, bear in mind that the steady state gain of the frequency
response does not always reveal the instability of the system, e.g., the system with
repeated poles on jω-axis, which is a con of the frequency response analysis. In fact,
if there is no transient at all, it is even possible to make unstable system 1/(s2 + 16)2

to have a bounded response (with no input but nonzero initial states). On the other
hand, if you try to draw a response due to a sinusoidal input with zero initial states,
a phase shift between the input and the response is built upon the transients—the
response is no perfect sinusoid when t ∈ [0,∞] (given the fact that both the input and
the response start from zero). A simple example is the integrator 1/s, for which when
the input is a sine, the output experiences transients and converges to a cosine; but
when the input is a cosine, the output is a perfect sinusoid with no transients.
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7.1. Frequency Response Complex Gain

Previously, we have evaluated the steady state response of step, ramp, and parabolic
input, in terms of its steady state error. Let’s further extend the concept of steady
state evaluation of the response to arbitrary sinusoidal inputs R(s) = ω

s2+ω2 .
Frequency response is the system’s steady state response to sinusoidal inputs, in

which the transients are not important thus shall be neglected. To this end, replacing
s = σ+jω with jω in T (s)R(s) provides steady state frequency response. Alternatively,
we can prove above “σ + jω → jω” trick by considering the following example. Let
the excitation be r(t) = sinωt or R (s) = ω

s2+ω2 , a second order system’s response is

Y (s) = T (s)R (s) =
N (s)

(s− λ1) (s− λ2)

ω

s2 + ω2
=

g1

s− λ1
+

g2

s− λ2
+
αs+ βω

s2 + ω2
(47)

where α and β are coefficients to be determined from the partial fraction expansion
and are related to coefficients of N(s) and poles λ1, λ2. The time-domain response is

y (t) = g1e
λ1t + g2e

λ2t + L−1

[
αs+ βω

s2 + ω2

]
= g1e

λ1t + g2e
λ2t + α cosωt+ β sinωt

In the limit t→∞, the first two exponential terms vanish, and we have18

y (t) |t→∞ = L−1

[
αs+ βω

s2 + ω2

]
= α cosωt+ β sinωt

= sgn (α)
√
α2 + β2 cos

[
ωt+ arc tan

−β
α

]
= |T (jω)| sin [ωt+ ∠T (jω)]

⇐

{
|T (jω)| = sgn (α)

√
α2 + β2

∠T (jω) = arc tan −βα

where α 6= 0 and if the amplitude is negative (when α < 0), it should be accounted
for phase shift of 180◦. It is, therefore, suggested to use arctan2 instead of arctan.

Final value theorem cannot be used to attain y(t) as t → ∞, because final value
theorem can only be applied to a response Y (s) when Y (jω) exists with jω 6= 0. A
non-rigorous proof to show that the last row of equation holds is as follows.

Y (s) = T (s)R (s) = T (s)
ω

s2 + ω2
= 0 + 0 +

αs+ βω

s2 + ω2

⇒ T (s) =

αs+βω
s2+ω2

ω
s2+ω2

=
αs+ βω

ω

⇒ T (jω) =
αjω + βω

ω
=
αj + β

1

⇒ |T (jω)|2 = α2 + β2

18Trigonometry identity used here can be found at https://en.wikipedia.org/wiki/List_of_
trigonometric_identities#Sine_and_cosine

https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Sine_and_cosine
https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Sine_and_cosine
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In the sequel, whenever we substitute s = jω, it assumes the above process has
been performed, including applying a sinusoidal excitation of the angular speed ω,
checking whether or not the system is stable, neglecting exponential decaying terms,
and focusing on the amplitude gain |T (jω)| and phase shift ∠T (jω). In other words,
the transfer function T (s) becomes a steady state complex gain T (jω) that is
function of the frequency of a sinusoidal input.

7.2. Transfer Function as Complex Number

The transfer function, the function of complex number s = 0+jω, is a complex number.
Therefore, we can draw a trace of the transfer function in the complex s-plane as ω
varies.

7.2.1. Trace Example: Simple Real Pole

See FIGURE 8.3 for the transfer function trace of a RC circuit having time constant
of 1/ω1. We can prove that the trace is a segment of a circle by checking the vectors
pointing at a point (x, y) from (0, 0) (when ω = ∞) and (1, 0) (when ω = 0) on the
trace has zero inner product as follows

x =
1

1 +
(
ω
ω1

)2 , y =
−
(
ω
ω1

)
1 +

(
ω
ω1

)2

⇒

 1

1 +
(
ω
ω1

)2 − 0,
−
(
ω
ω1

)
1 +

(
ω
ω1

)2 − 0

 ·
 1

1 +
(
ω
ω1

)2 − 1,
−
(
ω
ω1

)
1 +

(
ω
ω1

)2 − 0


=

1

1 +
(
ω
ω1

)2

 1

1 +
(
ω
ω1

)2 − 1

+
−
(
ω
ω1

)2

(
1 +

(
ω
ω1

)2
)2

=
1

1 +
(
ω
ω1

)2

1

1 +
(
ω
ω1

)2 −
1 +

(
ω
ω1

)2

(
1 +

(
ω
ω1

)2
)2 +

(
ω
ω1

)2

(
1 +

(
ω
ω1

)2
)2 = 0

(48)

7.2.2. Trace Example: Proportional-Integral (PI) Regulator

Consider the following transfer function suggested by Douglas:

C(s) = 1/s+ 2

which consists of an ideal integrator and a proportional gain. The analysis of the
amplitude gain and phase shift and the transfer function trace are shown in Fig. 27.
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Figure 27. Screenshot from Youtube video: “Control System Lectures - Bode Plots, Introduction”.

7.2.3. Trace Example: Proportional Regulator

A constant gain has a transfer function as follows

C(s) = K

which is a single point in Bode plot, but the sign of K will affects the phase shift.

7.3. Bode Plot of Typical Systems

Drawing the complex values of a transfer function in a s-plane with varying frequency
does not explicitly show the frequency. It is desired to draw amplitude gain and phase
shift as function of frequency.

Bode plot visualizes the relation between steady state frequency response T (jω)
versus frequency. Since T (jω) is a complex number, two separate plots are needed to
show logarithmic gain and the phase shift versus the frequency ω. The logarithmic
gain is measured in decibel or dB, which is defined as the common logarithm of the
frequency response gain squared:

1 dB = 10 log10 |T (s)|2 = 20 log10 |T (s)| (49)

If you go look up decibel in Wikipedia, it is defined as a relative value. In this course,
this relative value definition only makes sense when decibel is used to describe the
bandwidth of a system, in which the gain at low frequency for common closed loop
control system is T (0) = 0 dB.

Figure 28. Screenshot from Youtube video: “Bode Plots by Hand: Real Poles or Zeros”.

There are four basic building blocks for transfer functions, as shown in Fig. 28. We
are now going to derive the exact curves for each of the building blocks.
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7.3.1. Complex Poles/Zeros

Complex poles always appear in the form of conjugate pairs. This is because the model
of a physical system has characteristic equation Den(s) with real coefficients.

Consider the following standard second order transfer function:

T (s) =
ω2

0

s2 + 2ζω0s+ ω2
0

=
1

s2

ω2
0

+ 2ζ s
ω0

+ 1
(50)

where ω0 is the natural frequency, and note the numerator ω2
0 was put there to have a

dc gain of T (0) = 1. Consider steady state, i.e., s = jω, and treat T (jω) as a complex
number:

T (jω) =
1[(

jω
ω0

)2
+ 1

]
+ j

(
2ζ ωω0

)

=
1[

−
(
ω
ω0

)2
+ 1

]
+ j

(
2ζ ωω0

)
[
−
(
ω
ω0

)2
+ 1

]
− j

(
2ζ ωω0

)
[
−
(
ω
ω0

)2
+ 1

]
− j

(
2ζ ωω0

)

⇒


|T (jω)| [dB] = 20 log10 |T (jω)| = −20 log10

√[(
jω
ω0

)2
+ 1

]2

+
(

2ζ ωω0

)2

∠T (jω) = arc tan 2

(
−2ζ ωω0

,−
(
ω
ω0

)2
+ 1

)
Evaluate the above expression for three special cases.

• In case of ω � ω0, we have

ω

ω0
� 1⇒

{
|T (jω)| = −20 log10 1 = 0 [dB]

∠T (jω) = arc tan 2
(
−2ζ ωω0

, 1
)

= 0◦

• In case of ω = ω0, it gives

ω

ω0
= 1⇒


|T (jω)| = −20

2 log10 4ζ2


< 0 [dB] , 4ζ2 > 1

= 0 [dB] , ζ = 0.5

> 0 [dB] , 4ζ2 < 1

∠T (jω) = arc tan 2 (−2ζ, 0) = −90◦

Note only when ζ < 0.5, the amplitude at the natural frequency ω0 is larger
than 0 dB.
• In case of ω � ω0, it yields

ω

ω0
� 1⇒


|T (jω)| = −20

2 log10

[(
jω
ω0

)4
+
(

2ζ ωω0

)2
]

= −40 log10

(
ω
ω0

)
[dB]

∠T (jω) = arc tan 2

(
−2ζ ωω0

,−
(
ω
ω0

)2
)

= −180◦
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In the logarithmic diagram, the slope of the curve is measured as −40 dB/dec,
meaning whenever the excited frequency of the sinusoid increase by a factor of
10, the gain decreases −40 dB.

Looking at FIGURE 8.10, we have the following observations.

• The resonant frequency ωr (at which the amplitude gain peaking occurs) is
approaching the natural frequency ω0 as ζ → 0. This can be proved by putting
the derivative of |T (jω)| w.r.t. ω to zero, leading to

ωr = ω0

√
1− 2ζ2, ζ <

√
(2)/2

which means the peak amplitude occurs when the excitation frequency is equal
to the resonant frequency ωr.
• The slope of the magnitude gain curve is −40 dB/dec when ω � ω0.
• The slope of the phase shift curve is 45◦/dec only when damping ratio ζ is close

to 1.

The conjugate pair of zeros is the reciprocal of conjugate pair of poles. There is no
need to repeat the above derivation.

7.3.2. Real Pole/Zero

Consider the following transfer function T (s) and its frequency response complex gain
T (jω):

T (s) =
1

s
ω0

+ 1

s=jω⇒ T (jω) =
1

jω
ω0

+ 1

=
1

jω
ω0

+ 1

− jω
ω0

+ 1

− jω
ω0

+ 1

⇒

|T (jω)| [dB] = 20 log10 |T (jω)| = −20 log10

√
12 +

(
ω
ω0

)2

∠T (jω) = arc tan 2
(
− ω
ω0
, 1
)

which can as well be evaluated for three special cases depending on ω as compared to
ω0.

The results of a real zero can be obtained by taking an inverse of the results of a
real pole.

7.3.3. Pole/Zero at Origin

The transfer function of a marginally stable real pole leads to the following derivation

T (s) =
1

s

s=jω⇒ T (jω) =
1

jω
= −jω

⇒

{
|T (jω)| [dB] = 20 log10 |T (jω)| = −20 log10

√
ω2

∠T (jω) = arc tan 2 (−ω, 1)
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7.3.4. Constant

The results of a constant gain are:

T (s) = K ⇒

{
|T (jω)| [dB] = 20 log10 |T (jω)| = −20 log10K

∠T (jω) = arc tan 2 (0,K)

7.3.5. Asymptotic Curves for Sketching Bode Plot By Hand

See [1, Table 8.1] for list of asymptotic curves for basic building blocks for complicated
Bode plot. If a complicated transfer function consists of only four basic building blocks,
it is then possible to draw Bode plot by hand by carefully applying slope contribution
of each pole or zero from low frequency to high frequency.

Note when the poles and the zeros are very close to each other, the asymptotes
approach is no longer valid. Some correction must be made.

7.4. Frequency Response Measurement

Figure 29. Simulation of a sweep frequency test of a closed loop speed controlled ac motor drive with three

sets of tunings. Left: speed response. Right: motor torque.

Sinusoidal is a unique input signal that keeps its shape while passing through an
LTI system at steady state with differences from the input only in amplitude and
phase angle. This fact has made sinusoid a good test signal for system identification
and closed loop control performance measurement.

We can draw Bode plot by hand given the transfer function. In turn, it is also
possible for us to deduce the transfer function from the measured frequency response of
a system. There are signal analyzer instruments working on this principle. An example
is provided in [1, Section 8.3].

Frequency response can also be used to measure the closed loop control performance
measurement. For example, a series of sinusoids of different frequencies can be applied
to the closed loop system, which is known as the sweep frequency test. Fig. 29 shows
the sweep frequency test of the same control system with three different tunings, and
the shape of the envelope of the speed response indicates the amplitude gain.

7.5. Performance Specifications in Bode Plot

Performance specification for a standard second order system is specified in terms of
rise time and overshoot that are related to natural frequency ωn and damping ratio ζ.
We can have an estimate of ωn and ζ from the Bode plot.
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Natural frequency ωn is related to the −3 dB bandwidth ωB. Bandwidth ωB is
defined as the frequency at which the frequency response amplitude gain |T (jω)| has
declined 3 dB (about 1/

√
2) from its low-frequency value |T (0)|. There also exists

definition of bandwidth in terms of phase shift.19

Damping ratio ζ is related to amplitude peak value Mpω:

Mpω = |T (jωr)| =
1

2ζ
√

1− ζ2
, ζ < 1/

√
2 (51)

Finally, steady state error can also be evaluated by either looking at the low fre-
quency gain T (0) (if it is a finite value) or the slope of the amplitude versus frequency
curve at low frequency.

7.6. Relative Stability

Recall the block diagram reduction formula for a negative unity feedback loop is

T (s) =
CP

1 + CP
=

L (s)

1 + L (s)

and note for a positive unity feedback loop it becomes

T (s) =
CP

1− CP
=

L (s)

1− L (s)

where the loop gain L(s) has been defined as the gain of the loop. We will assume
negative feedback in the sequel.

Previously, the relative stability has been evaluated as the distance of the pole away
from the imaginary axis using RH criterion. In frequency response analysis, we never
really solve for the real parts of poles, so we n need to develop a different approach to
evaluate the relative stability.

7.6.1. Motivation

It is possible to determine the stability of T (s) by evaluating its frequency response
complex gain T (jω). It is further possible to evaluate the stability of a closed loop
complex gain T (jω) by looking at its open loop complex gain L(jω). If open loop
transfer function gain L(jω) = C(jω)P (jω) 6= −1, ∀ω > 0, then the negative feedback
control system shall not experience undamped oscillation (i.e., not BIBO stable).

Note in the complex plane, −1 = 1∠−180◦ corresponds to a point (−1, 0j), and
L(jω) is nothing more than a complex number. If we eliminate the frequency axis of
the Bode plot of L(jω), then we can obtain a Lissajour-curve-like plot for the frequency
response, as exemplified in Fig. 30. We can called it log-magnitude-versus-phase plots,
and typical plots for simple transfer functions are summarized in Fig. 31.

19Note the definition of bandwidth as drop from peak by 3 dB in signal processing that associates with band-

pass filter is completely different from the bandwidth definition in control theory, see https://electronics.
stackexchange.com/questions/280425/bandwidth-of-a-system for a related discussion. In short,

they are completely two things. A simple counter example is a standard second order system with damp-
ing ratio less than 0.5.

https://electronics.stackexchange.com/questions/280425/bandwidth-of-a-system
https://electronics.stackexchange.com/questions/280425/bandwidth-of-a-system
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Figure 30. The “Lissajour plot” of the frequency responses of two example systems [1]. The relative stability
can be compared in terms of stability margins and L1 is more stable than L2.

7.6.2. Phase Margin and Gain Margin

From Fig. 30, the stability margin (of frequency response) has been defined as the clos-
est distance from the L(jω)-trace to the point (−1, 0j) or (0 dB, 0◦) in the magnitude
gain–phase shift plot.

The gain margin indicates how much gain the open loop system can have before the
closed loop system becomes not stable. The phase margin shows how much phase shift
or time delay the open loop control system can have before the closed loop system
becomes not stable.

The Bode plot can also be used to determine if a system is stable by checking
if its gain margin and phase margin in two separate plots are positive, as shown in
Fig. 32. The gain margin is easily understood: if we add another constant gain of
K = 15 dB to L1 in Fig. 32, then the closed loop control system becomes not stable.
The phase margin is less intuitive, but as more constant gain is added to L1, the phase
margin is found to be less, this is simply because of the monotonically decreasing of
the phase-frequency curve.

Stability margin helps to stabilize the system when the actual system has high
uncertainty including parameter change or unmodelled dynamics. Previously, we have
used the RH criterion for evaluating the relative stability of the system against a
vertical line (e.g., σ = −1) in s-plane. The advantage of a Bode plot over RH criterion
is at its ability to visualize relative stability in frequency domain without any iteration
for finding the maximal |σ|.

The following paragraph is quoted from [5, p.467]:

“For satisfactory performance, the phase margin should be between 30◦ and 60◦, and
the gain margin should be greater than 6 dB. . . . For minimum-phase systems, the
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Figure 31. Log-magnitude-versus-phase plots of simple transfer functions [5].

magnitude and phase characteristics of the open loop transfer function are definitely
related. The requirement that the phase margin be between 30◦ and 60◦ means that in
a Bode diagram the slope of the log-magnitude curve at the gain crossover frequency

should be more gradual than –40 dB/dec. In most practical cases, a slope of
–20 dB/dec is desirable at the gain crossover frequency for stability.”

The design guideline of crossing 0 dB with a slope of −20 dB/dec is in fact very useful
and we will have a design example utilizing this guideline. But, what are minimum-
phase systems?

7.6.3. Unstable Pole in Open Loop Transfer Function

Unfortunately, this “Bode’s stability criterion” in terms of stability margins only works
if the closed loop system does not have any zero or pole on the right hand s-plane.

An real life example of an open loop system having RHP pole is seen in the control of
power electronic devices to provide power to a constant power load in a dc micro-grid,
where the impedance of the load in a local linearization is evaluated to be negative,
which results in unstable poles in small signal model.20

1 s = zpk(0, [], 1);
2 unstableT = 100/(sˆ2 - 4*s + 15);

20See EQUATION (4) and (5) in Emadi et al., Constant Power Loads and Negative Impedance Instability in

Automotive Systems: Definition, Modeling, Stability, and Control of Power Electronic Converters and Motor
Drives, TVT VOL. 55, NO. 4, JULY 2006.
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Figure 32. The Bode plot of the frequency responses of the open loop system L1 from Fig. 30 [1].

The following MATLAB snippet can be used for checking the margins and stability
of the closed loop system.

1 Popen = 5*(s+3)/s/(s-1)
2 P = Popen/(1+Popen)
3 % P = Popen
4 figure
5 allmargin(P)
6 bode(P)
7 h = bodeplot(P);
8 h.showCharacteristic(’AllStabilityMargins’)

This script show that the open loop system has a negative gain margin (GM =
−14 dB), but the closed loop system is found to be stable. Therefore, we realize
that the gain margin does not have to be positive for a closed loop control system to
be stable.

For an open loop transfer function that does not have RHP zero/pole, a negative
gain margin means its closed loop system is unstable. Therefore, we will need a bet-
ter tool (Nyquist plot) for evaluating closed loop stability using open loop transfer
function.

7.6.4. Relative Stability for Closed Loop System

Recall it has been warned in the beginning of this chapter, that steady state response
in frequency domain is not always a correct indicator of stability.

The bode plot of the system having repeated conjugate poles on imaginary axis can
be evaluated using MATLAB snippets as follows.

1 s = zpk(0, [], 1);
2 P = 1/(sˆ2+16)ˆ2
3 allmargin(P)
4 h = bodeplot(P);
5 h.showCharacteristic(’AllStabilityMargins’)
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Looking at the bode plot of this unstable system, it is a bit difficult to determine if
this system is unstable by looking at its stability margins. In fact, the stability margin
matters only if we are including this system into a closed loop feedback control system.
In fact, the only useful information is the break/corner frequency and the phase shit
occurs at that frequency. The sudden change in phase is 360 degrees, implying four
poles at the corner frequency.

The bode plot can be plotted for both open loop transfer function and closed loop
transfer function. But, the phase margin and gain margin are only valid for analyzing
the stability of closed loop system in terms of open loop transfer function. If the
relative stability of a closed loop transfer function is of interest, one should resort to
the RH criterion that checks how far the poles are away from the imaginary axis.

To recap,

• the distance between the closed loop pole location and imaginary axis is a mea-
sure of relative stability of closed loop system;
• the stability margins (i.e., gain margin and phase margin) of the open loop

transfer function is also a measure of relative stability of closed loop system;
• the stability margins (i.e., gain margin and phase margin) of the closed loop

transfer function is generally not as useful.

7.6.5. RHP Zero in Open Loop Transfer Function

Like unstable pole, a RHP zero will also make “Bode’s stability criterion” fail.
Consider the following open loop system having a RHP zero.

1 close all; cla; clc
2 s = zpk(0, [], 1);
3 Popen = 500*(s-2)/(s+1)/(sˆ2+30*s+229)
4 P = Popen
5 %P = Popen/(1+Popen)
6 %P = Popen/(1-Popen)
7 figure
8 allmargin(P)
9 h = bodeplot(P);

10 h.showCharacteristic(’AllStabilityMargins’)
11 figure
12 step(P)

The step response of the open loop system is stable. However, the closed loop system
is unstable, neither via negative feedback nor positive feedback. Therefore, we will
need a better tool (Nyquist plot) for evaluating closed loop stability using open loop
transfer function.

In addition, for an open loop RHP zero to become an unstable pole in closed loop
system T (s) = CP/(1 + CPH), the only way is to have RHP zero in the feedback
channel, e.g., H(s) = s−1

s+10 . This is seldom seen, though.

7.7. Vector Interpretation of the Frequency Response Complex Gain

To understand what is so special about RHP zero and pole, we are now going to
introduce a vector tool in pole-zero map.

The contribution by each pole or zero to the frequency response complex gain is
not easily examined in the Bode plot in which effects all poles and zeros are taken
into account for frequency of interest. If we view frequency response of the transfer
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Figure 33. Vector evaluation of a transfer functions in terms of its poles [1].

function as a complex gain, each pole/zero explicit term represents a factor of complex
gain that is related to the vector lengths and angles between the pole/zero location
and the “responsive point” (0, jω), as exemplified in Fig. 33.

If there is a zero on the imaginary axis, it is possible to prevent a certain frequency
from passing through the system. An example system is [1, EXAMPLE 8.4]

T (s) =

(
s
ω0

)2
+ 1(

s
ω0

)2
+ 4 s

ω0
+ 1

Its gain at ω = ω0 is zero, which is contributed by the pair of the conjugate zero.

7.8. Nonminimum Phase System

The vector interpretation of each factor of the complex gain T (jω) is found very
convenient for analyzing the phase shift contributions of the right hand s-plane zeros.
See FIGURE 8.16 in [1].

If we compare systems with right hand s-plane zeros or poles to the one that does
not, the Bode plot will report a nonminimum phase shift. Hence, the name. This can
be geometrically interpreted because the phase shift is read from the real axis to the
frequency responsive point (0, jω) in a CCW direction.

An example of realistic nonmininum phase system is the Buck converter with current
source supply.21 The most remarkable indicator of a nonminum phase system is its
step response will have an opposite response against the command at first and then it
follows the command.

The definition of nonminimum phase system in the textbook [1] is incomplete. The
correct definition is found in other materials, e.g., [5]: “If all the poles and zeros of

21Li et al., ON Effect of Right-Half-Plane Zero Present in Buck Converters With Input Current Source in
Wireless Power Receiver Systems. TPEL VOL. 36, NO. 6, JUNE 2021.
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a system lie in the left half s-plane, then the system is called minimum phase. If a
system has at least one pole or zero in the right-half s-plane, then the system is called
nonminimum phase.”

7.9. Discussions

Let’s discuss applications of Bode plot.

7.9.1. Design Example: Tuning of A Nested Loop Control System

 

Figure 34. The nested loop controller for field oriented control of ac motor. The Park transform is omitted.

This is an example design from TI’s InstaSPIN motion control user guide.22 Consider
the nested loop controller for field oriented controlled ac motor shown in Fig. 34.

Why nested loop control? If you want to control the speed of the motor, you es-
sentially need to control the time derivative of the speed, and modify the derivative
of the speed through the variables that appear in it that you can control. Therefore,
we need to take the derivative of the speed, and after the calculation, we find that
current appears. We generally do not have a current source power supply, so we need
to take the derivative of the time derivative of the speed again, and we see that voltage
appears. So we say that the relative order from voltage to current is 2.

• Generally, we need to measure the speed of the motor and calculate the given
voltage through the PD control law. D is added to adjust the damping of the
second-order system.
• Nested loop control, on the other hand, can convert a control problem of relative

order 2 into two control problems of relative order 1, at the cost of adding
additional sensors to measure the intermediate state, i.e., the current (which has
relative order of 1 from input voltage to the output speed).

Let’s apply the loop reduction technique to derive iq/i
∗
q . The inner current loop

turns out to be a second order transfer function. The extra pole is introduced by the
introduction of the integral control term kpki/s. In practice, the inner loop can take
advantage of this extra zero, and impose a zero-pole cancellation. To this end, we
need to place the zero (s = −ki) of the open loop transfer function to R/Lq [rad/s].
After zero-pole cancellation, we define the corner frequency of the rest first-order
transfer function

iq
i∗q

=
1

s
CLBW + 1

as the −3 dB bandwidth of current closed loop system, i.e.,

kp = Lq × CLBW

22www.ti.com/lit/ug/spruhj1h/spruhj1h.pdf

www.ti.com/lit/ug/spruhj1h/spruhj1h.pdf
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where CLBW [rad/s] stands for current loop bandwidth. This is not a standard second
order transfer function because of the presence of the zero at s = −KI introduced
by the integral control. We cannot use dominant poles or use transient performance
metrics.

The speed closed loop transfer function is

Ω (s)

Ω∗ (s)
=

KPnppψA

Jss2
s+KI
s

CLBW
+1

1 + KPnppψA

Jss2
s+KI
s

CLBW
+1

= KP
nppψA

Js

s+KI

1
CLBWs3 + s2 +KP

nppψA

Js
(s+KI)

(52)

The following design with another tuning button called damping factor δ [1]:

ki =
R

Lq

kp = Lq × CLBW

KI =
CLBW

δ2

KP
nppψA

Js
= δKI =

CLBW

δ

(53)

is suggested to make sure the amplitude gain of the speed open loop frequency response
passes through 0 dB at the peaking of phase shift-ω curve, such that the largest phase
margin can be approximately obtained. This design works because the presence of the
zero between two poles. The first pole is

The following snippet shows a design that does not fully follow the above KP and
KI tuning rule so the phase margin is not as large as possible.

1 close all; cla; clc
2 s = zpk(0, [], 1);
3 Popen = 100/sˆ2 * (s+10)/(s/100+1)
4 P = Popen/(1+Popen)
5 allmargin(Popen)
6 h = bodeplot(Popen);
7 h.showCharacteristic(’AllStabilityMargins’)
8 figure; bode(P)
9 figure; step(P)

As a comparison, the following snippets implement the above tuning rule (53). The
results are shown in Fig. 35

1 close all; cla; clc; s = zpk(0, [], 1);
2 % two tuning buttons
3 CLBW = 200; delta = 2;
4 % inner loop
5 Lq = 5e-3; R = 1; kp = CLBW*Lq; ki = R/Lq;
6 PCL = 1/(Lq*s+R); CCL = kp*(1+ki/s);
7 PclosedInner = CCL*PCL / (1+CCL*PCL)
8 % outer loop
9 n_pp = 4; psi_A = 0.1; Js = 0.006; K = n_pp * psi_A / Js;

10 KP = CLBW / delta / K; KI = CLBW/deltaˆ2;
11 PVL = K/s; CVL = KP*(1+KI/s);
12 Popen = CVL * PclosedInner * PVL;
13 PopenMargin = allmargin(Popen)
14 P = Popen/(1+Popen)
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Figure 35. Nested loop control design with CLBW = 200 rad/s and δ = 2. For motor parameters, see code

snippets.

15 P = minreal(P)
16 subplot(221); h = bodeplot(Popen); h.showCharacteristic(’

AllStabilityMargins’)
17 subplot(222); bode(P); grid; h1 = findobj(gcf,’type’,’line’); set(

h1,’linewidth’,2);
18 subplot(223); step(P); grid; h1 = findobj(gcf,’type’,’line’); set(

h1,’linewidth’,2);
19 subplot(224); pzmap(P); grid; h1 = findobj(gcf,’type’,’line’); set(

h1,’linewidth’,2);

The closed loop speed control system has three poles and one zero, and as a result,
its Bode plot in Fig. 35 is very similar to a second order system. Generally speaking,
a zero is able to cancel the effect of a pole, as long as they are close enough in the
complex s-plane.

The transfer function from load torque disturbance −TL(s) to speed output Ω(s)
can be analyzed using the following code snippet.

1 openloopDisturbance = 1/s / Js;
2 H = CVL * PclosedInner;
3 PDisturbance = openloopDisturbance/(1+openloopDisturbance*H)
4 figure; bode(PDisturbance); grid; h1 = findobj(gcf,’type’,’line’);

set(h1,’linewidth’,2);
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Figure 36. Sensitivity function frequency response. From left to right are noise to error 1 − S, reference to
error S, disturbance to error PS, and CS (which equals to 1).

7.9.2. Frequency Response of The Gang Members

Recall the gang members from Section 4.8 defined for evaluation of different inputs.
The gang members’ frequency responses are important for practical control system
design.

Let’s consider a simple example with the aid of Matlab.

1 P = tf([1], [1, 1])
2 C = tf([1, 1], [1 0])
3 subplot(141); bode(C * P/(1+C * P)); grid; h1 = findobj(gcf,’type’,

’line’); set(h1,’linewidth’,2);
4 subplot(142); bode(1/(1+C * P)); grid; h1 = findobj(gcf,’type’,’

line’); set(h1,’linewidth’,2);
5 subplot(143); bode(P/(1+C * P)); grid; h1 = findobj(gcf,’type’,’

line’); set(h1,’linewidth’,2);
6 subplot(144); bode(C/(1+C * P)); grid; h1 = findobj(gcf,’type’,’

line’); set(h1,’linewidth’,2);

where the controller C(s) = (s+ 1)/s is a PI regulator.

7.9.3. Bode Plot of the Closed Loop System

When discussing relative stability, it is assumed we want to check the stability of the
closed loop system by looking at the Bode plot of the open loop frequency response.
The Bode plot can of course be directly used for closed loop system, and it is possible
to distinguish between a stable closed loop transfer function and an unstable closed
loop transfer function by looking at their Bode plots.
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8. Stability in Frequency Domain

We have learned RH criterion applied to characteristic equation and Bode plot of
frequency response. A comparison between these two methods shall now be put forth.

Relative stability has distinct meanings in those two methods.

• The relative stability by RH criterion is evaluated by the distance of the roots
of the characteristic equation from the jω axis. Since only the sign of the real
parts of the poles can be evaluated by RH criterion, this distance can only be
found though a trial and error approach, which is deemed inconvenient.
• The relative stability by steady state frequency response is evaluated by the hor-

izontal and vertical distance of the complex gain curve from the (0 dB,−180◦)
point in the Lissajour-curve-like plot of the frequency response. These two dis-
tances are known as stability margin (i.e., gain margin and phase margin). Sta-
bility margins read from Bode plot are only valid for minimum phase open loop
system.

Note the key difference is that the Bode plot looks into the open loop system to figure
out the relative stability of the closed loop system, while the RH criterion directly
checks the characteristic equation of closed loop system to check relative stability.

In terms of sufficiency and necessity, they are different, because the complex gain
of the steady state frequency response is not equivalent to the characteristic equation.

• RH criterion based on characteristic equation is a sufficient and necessary con-
dition of BIBO stability, simply because it checks for stability by counting the
number of right hand s-plane poles. The sufficient and necessary condition for
stability is not having RHP roots in the characteristic equation (of the closed
loop transfer function).
• The Bode plot method, on the other hand, does not really tell us information

about the unstable roots of the characteristic equation (of a closed loop function).
The Bode plot stability criterion is motivated by the fact that the steady state
amplitude gain of the closed loop system should not become infinity for sinusoidal
input of any frequency.

For this reason, we should stick with the RH criterion for checking stability, but Bode
plot is more convenient to check relative stability of a closed loop control system whose
open loop transfer function is a minimum phase system that has no RHP zeros/poles.

This chapter is going to introduce a tool called Nyquist plot, and it is a result of
mapping Nyquist contour to another complex plane. This is the tool that checks RHP
poles of the closed loop system by looking at the roots of the characteristic equation,
and at the same time, it allows to visually check stability margins.

8.1. Motivation and Prerequisite

We assume the zeros and poles of the plant P (s) and sensor H(s) are known, and of
course we are aware how many poles there are in the controller C(s). The bad news
is that, the characteristic equation 1 + CPH = 0 is difficult to solve, especially when
there are new poles introduced in C(s) and H(s).

The whole chapter makes sense only you agree that 1 +CPH = 0 cannot be solved
easily and the poles of C(s)P (s)H(s) are already known.
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8.2. Nyquist Plot

Figure 37. The Nyquist contour Γs. The Nyquist contour starts at origin and covers the whole right hand

s-plane in a clockwise direction. The infinitely large half circle will be mapped to a point in the image plane,
i.e., the L(s)-plane.

 

Figure 38. Conformal mapping with a flipped mapping in the local. The angle between the two local line

segments that cross at point s is preserved after the conformal mapping.

I came across the lecture notes of ECE 486 from UIUC.23 I suggest you to take a
look, and the key take-away’s are summarized below.

(1) Nyquist contour Γs in Fig. 37 begins at origin, moves vertically along the imag-
inary axis to infinity. This happens to be the same as we evaluate the frequency
response by sweeping s = jω with ω ∈ [0,∞]. Therefore, this method is said to
evaluate stability in the frequency domain.

(2) Nyquist plot is a set of points and is the result of mapping Nyquist contour in
s-plane to the L(s)-plane, where L(s) is the open loop transfer function L(s) =
CPH. Nyquist plot of L(jω) can be viewed as the image of the imaginary axis
{jω ∈ C : −∞ < ω <∞} under the mapping L : C 7→ C.

(3) The conformal mapping L(s) is a function of complex number, as long as its
derivative with respect to s is not equal to zero. Conformal mapping is angle-
preserving. Angle-preserving means that conformal mapping preserves the angle
of any two arbitrary smooth curves that cross at point s after the mapping.
For example, consider an arbitrary point on a contour, where the left segment
to the point and the right segment to the point are two curves, and the angle
of these two segment is not changed during a conformal mapping, as shown in
Fig. 38. Angle-preserving property ensures that the Nyquist contour preserves its

23Nyquist Stability Criterion in ECE487: https://courses.engr.illinois.edu/ece486/fa2018/handbook/lec18.html.

https://courses.engr.illinois.edu/ece486/fa2018/handbook/lec18.html
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rotating direction in the image plane or L(s)-plane as long as the contour is not
flipped after the conformal mapping. To understand how flipping occurs during
a mapping, let’s consider a point s = rejφ in the Nyquist contour, the inverse
mapping L(s) = s−1 flips the contour in the image plane, because s−1 = r−1e−jφ

in which a negative sign is seen in the angle/argument of this complex number.
On the contrary, the conjugate inverse mapping L(s) = 1/s̄ = r−1ejφ does not
flip the contour, i.e., the image contour preserves the rotation direction.

(4) The argument principle (in control) [1] states that the s-plane closed contour
Γs (that does not self-intersect, and does not pass through any poles or zeros)
encircles Z zeros and P poles of L(s) in clockwise direction, and then its image
contour ΓL(s) will encircle the origin of L(s)-plane Ncw = Z − P times in the
clockwise direction, and negative Ncw indicates the number of encirclement in
contour-clockwise direction, i.e., Nccw = −Ncw.24

(5) Nyquist stability criterion states that closed loop system is stable if and only if
the Nyquist plot of its characteristic equation 1 + L(s) encircles the point (0, 0)
counterclockwise P times, where P is the number of unstable open loop poles of
L(s), i.e.,

P = #(unstable open loop poles)

= Z −Ncw

= #(unstable roots) +Nccw

= 0 +Nccw

(54)

This is understood by considering only the angles of the following fraction

∠L(s) = ∠
(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)

= ∠
ejψ1 · · · ejψm
ejϕ1 · · · ejϕm

=

m∑
i=1

∠ (s− zi)−
n∑
j=1

∠ (s− pj)

=

m∑
i=1

ψi −
n∑
j=1

ϕj

where note that L(s) consists of physically realizable systems in practice, there-
fore we have the dimension n ≥ m. When Nyquist contour encircles a zero or a
pole, the change in ψi or ϕj will be 360◦.

(6) Nyquist criterion is the frequency domain equivalent of Routh-Hurwitz stability
criterion. This implies that the characteristic equation is evaluated for closed
loop system stability. The roots are not solved. Only the positiveness of the real
parts of the roots are checked.

(7) Nyquist plot is symmetric about the horizontal real axis, because:

L(−jω) = L(jω)

24In case you are interested in a formal proof of the argument principle in math, please see https://www.
youtube.com/watch?v=79-ESkh5_f0.

https://www.youtube.com/watch?v=79-ESkh5_f0
https://www.youtube.com/watch?v=79-ESkh5_f0
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where the over-line denotes the conjugate of the complex number.
(8) A not proper transfer function has a Nyquist plot that ends infinitely far away

from origin.
(9) A proper but not strictly proper transfer function has a Nyquist plot that ends

at the real axis when s =∞.
(10) A strictly proper transfer function has a Nyquist plot that ends at origin.
(11) Relative stability can be read from the Nyquist plot. The Nyquist plot is closely

related to the Lissajour-curve-like trajectory of the Bode plot. The main dif-
ference is how you should read the gain margin. In dB-degrees plot, it is the
difference between the critical point (0 dB, 180◦) and the crossing at the hori-
zontal line:

GM [dB] = 0 dB− |L (jω)|ω=arg[∠L(jω)=180◦] (55)

In s-plane, gain margin is read as a division:

GM = 1/ |L (jω)|ω=arg[∠L(jω)=180◦] (56)

(12) The proportional gain in the controller C(s) acts as a scale to the Nyquist plot.
Therefore, if the Nyquist plot has some portion on the left hand L(s)-plane, it
has a finite gain margin GM.

(13) When there is a pole L(s) on the imaginary axis, the gain becomes infinite and
the phase becomes indefinite when s = jω passes through the zero. In this case,
we need to adjust the Nyquist contour around this open loop marginally stable
pole, such that the phase in the L(s)-plane can be determined. Think what
happens when there is repeated poles at origin?

(14) When there is a zero L(s) on the origin, there is no need to adjust the Nyquist
contour. The Nyquist plot goes to 0 when Nyquist contour passing the marginally
stable open loop zero.

8.2.1. Steps to Plot a Nyquist Plot

Steps to plot the Nyquist plot are now summarized.

(1) If a numerical solution is needed, sketch the Bode plots by hand to obtain the
magnitude versus frequency plot and phase versus frequency plot. Use Bode
plot to sketch Nyquist plot. Pay attention to the crossings of 0 dB line and
90◦, 180◦, 270◦, 360◦ lines. The 0 dB crossing point is mapped to the unit circle;
while crossings of 90◦, 180◦, 270◦, 360◦ are mapped to the real and imaginary
axes of the image plane.

(2) If a symbolic solution is needed, compute the real part and imaginary part of
L(jω).
• The crossing point between the Nyquist plot and the real axis can

be obtained by first setting Im[L(jω)] = 0 to obtain the angular fre-
quency ωIm=0, and then compute for Re[L(jωIm=0)]. The crossing point
is (Re[L(jωIm=0)], 0).
• The crossing point between the Nyquist plot and the imaginary axis can

be obtained by first setting Re[L(jω)] = 0 to obtain the angular fre-
quency ωRe=0, and then compute for Im[L(jωRe=0)]. The crossing point
is (Re[0, L(jωIm=0)]).
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(3) If there is a pole at the origin, to be consistent with the “nyqlog” function,
we choose to exclude the marginally stable pole from the Nyquist contour. See
EXAMPLE 9.2 and EXAMPLE 9.3 in the textbook [1].

(4) Count the encirclements, count unstable open loop poles, and apply Nyquist
criterion Z = Ncw + P to find the unstable roots of the characteristic equation.

The following MATLAB snippet calculates the frequency response of a transfer
function at 10 rad/s.

1 evalfr(L, 10j)

The following MATLAB plots only the portion of a Nyquist plot when ω > 0.

1 plotoptions= nyquistoptions(’cstprefs’) ; % default options
2 plotoptions.ShowFullContour = ’off’; % exclude negative

frequencies
3 nyquist(L, plotoptions)

Alternatively, the MATLAB function nyqlog written by a third party provides indi-
cator for positive frequencies and negative frequencies as well. Moreover, it handles
infinite long Nyquist plot well by using a logarithm plot. 25

1 nyqlog(L)

Trick question 1: What happens when the Bode plot does not intercept 180◦?
Examples include: L = 1/(s+ 1), and L = s/(s+ 2)/(s− 5). Hint: the phase does not
matter if the magnitude is zero.

Trick question 2: What is the rotating direction when the Nyquist contour
encircles a pole and a zero at the same time? Check for L = (s − 2)/(s − 5),
L = (s− 5)/(s− 2), L = (s− 5)/(s+ 2), and L = (s− 2)/(s− 5)/(s− 1) to find out.
Hint: one unstable pole flips the Nyquist plot once.

If it is required to use the Nyquist plot for determining the range of a gain K ≥ 0,
the key step is to calculate for the crossing point of the Nyquist plot to the negative
real axis. Compare the crossing point’s coordinate with (−1, 0) to determine
the range of K.

Example 1: find the range of K that makes

1 + L(s) = 1 +K/(s+ 1)/(s+ 2)

stable. Plot a stable Nyquist plot for a value of K. Hint: the point (−1/K, 0) must
avoid getting inside the Nyquist plot.

Example 2: find the range of K that makes

1 + L (s) = 1 +K/ (s− 1) /
(
s2 + 2s+ 3

)
stable. Plot a stable Nyquist plot for a value of K. Find the gain margin and phase
margin.

Example 3: find the range of K that makes

1 + L (s) = 1 +K (s− 1) / (s+ 2) /
(
s2 − 2s+ 1

)
25Don’t download version 1.6 (2016), but download version 1.5 (2009) instead. https://ww2.mathworks.

cn/matlabcentral/fileexchange/7444-nyquist-plot-with-logarithmic-amplitudes#version_history_tab. Or, just go to
course material repository: https://github.com/horychen/ee160.

https://ww2.mathworks.cn/matlabcentral/fileexchange/7444-nyquist-plot-with-logarithmic-amplitudes#version_history_tab
https://ww2.mathworks.cn/matlabcentral/fileexchange/7444-nyquist-plot-with-logarithmic-amplitudes#version_history_tab
https://github.com/horychen/ee160
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stable. Plot a stable Nyquist plot for a value of K. Find the gain margin and phase
margin.

The following MATLAB snippet is useful to find answers to the above examples.

1 close all; cla; clc; s = zpk(0, [], 1);
2 L = 1/(s+1)/(s+2)
3 L = 3.5/(s-1)/(sˆ2+2*s+3)
4 L = 1.75*(s-1)/(s+2)/(sˆ2-s+1)
5 nyqplot(L)
6 subplot(121)
7 h = bodeplot(L);
8 h.showCharacteristic(’AllStabilityMargins’)
9 grid; h1 = findobj(gcf,’type’,’line’); set(h1,’linewidth’,3);

10 subplot(222)
11 h=nyquistplot(L);
12 h.showCharacteristic(’AllStabilityMargins’)
13 h1 = findobj(gcf,’type’,’line’); set(h1,’linewidth’,3);
14 daspect([1 1 1])
15 subplot(224)
16 nyqlog(L)

Example 4: Stability and fast responsiveness are conflicting. Consider the pitch
system of the auto pilot of F16 example by Brian Douglas, where the input is angle
of of the elevator, and the output is the pitch angle of the aircraft.

1 format long
2 L=(3.553e-15*sˆ4-0.1642*sˆ3-0.1243*sˆ2-0.00161*s+9.121e-17)/(s

ˆ5+1.825*sˆ4+2.941*sˆ3+0.03508*sˆ2+0.01522*s-1.245e-15)
3 roots([1 1.825 2.941 .03508 .01522 -1.245e-15])
4 nyqplot(L)
5 subplot(121)
6 h = bodeplot(L);
7 h.showCharacteristic(’AllStabilityMargins’)
8 grid; h1 = findobj(gcf,’type’,’line’); set(h1,’linewidth’,3);
9 subplot(122)

10 h=nyquistplot(L);
11 h.showCharacteristic(’AllStabilityMargins’)
12 h1 = findobj(gcf,’type’,’line’); set(h1,’linewidth’,3);
13 daspect([1 1 1])

Somehow the produced results are a bit off from the results of the Youtube video
(tsgOstfoNhk).

8.3. Nichols Chart*
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9. Root Locus Method

The Nyquist plot becomes difficult to read when there are poles on the imaginary axis.
For example, try to use the MATLAB script from last chapter to draw the Nyquist
plot of L(s) = 10/(s(s+ 1)(s2/4 + 1)).

We have analyzed system performance in time domain (in terms of metrics including
peak time, rise time, settling time, steady state error) and frequency domain (in terms
of metrics including phase margin, gain margin, and bandwidth).

The system stability can be analyzed using RH criterion and Nyquist plot that
both focus on the characteristic equation of closed loop system. This chapter focuses
on s-domain analysis tool, known as the root locus method. It can be used for analysis
of stability and performance.

9.1. Motivation: are these two systems equivalent?

I have said in class that I don’t feel like the block diagram reduction is actually useful
for practical application. Now I am ready to give a counter-example. Consider two
systems that have the same closed loop transfer functions, as shown in Fig. 39a and
Fig. 39b, but are they really equivalent, given different open loop transfer functions?

Their difference in the open loop transfer functions results in completely different
root loci in the s-plane as evaluating systems in Fig. 39c and Fig. 39d. Sample codes
are listed below, where minreal is essential to clean up the root loci by removing pole
zero cancellation pairs.

1 s = zpk(0, [], 1);
2 CP = 1/s/(s+50);
3 H = 1/(s+30);
4 L1 = CP*H
5 L2 = CP / ( 1 + CP*H - CP); L2 = minreal(L2)
6 figure
7 subplot(221); rlocus(L1)
8 subplot(222); pzmap(L1)
9 subplot(223); rlocus(L2)

10 subplot(224); pzmap(L2)

 

Figure 39. Two systems having the same closed loop transfer function are not equivalent in .
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9.2. Tuning Arbitrary Parameter Using Root Locus Method

The root locus method assumes the varying parameter is a constant gain applied to
the open loop transfer function. When parameter appears in a random location in the
transfer function, can we still use root locus method?

Consider the following example from one of Brian’s video26

C (s)P (s) =

(
5 + 0.3s+

5

sτ

)
1

0.01s2 + 0.11s+ 0.1
(57)

The time constant τ for the integral control is the variable to be tuned.
Generally speaking, it is okay to directly calculate for the roots of 1 + CP with

parameter appearing in arbitrary location, e.g., τ in (57), and plot them in the s-
plane, but we lose the intuition about how the roots move in the s-plane.

9.3. Rules to Plot Root Locus

Rearrange the characteristic equation such that the parameter to be tuned appears as
a gain denoted by K:

1 + L(s) = 1 +K
Q(s)

P (s)

(1) Roots move from the poles of L(s) to the zeros of L(s). If there are more poles
than zeros, those poles with unmatched “zero friend” will go to infinity to seek
their friends. Similarly, if there are more zeros than poles, loci will come from
infinity to those zeros with unmatched poles. As a result, there are n loci where
n is the degree of Q(s) or P (s) whichever is greater. In most cases, we use n
as the order of polynomial P (s), and use M to denote the order of polynomial
Q(s), and for physically realizable systems, n ≥M .

(2) Roots that are not on the real axis, always appear in conjugate pairs, because
the characteristic equation 1 + L(s) has real coefficients.

(3) Each root locus does not cross over itself.
(4) The portion of the real axis to the left of an odd number of open loop poles and

zeros are part of the loci, because the angles contributions of all zeros and poles
add up to 180◦ when K ≥ 0.

(5) A pair of loci leave and enter the real axis at 90◦.
(6) The n−M lines going to infinity have asymptotes that have angles determined

by φA = 180◦(2k + 1)/(n−M), with k = 0, 1, 2, . . . , (n−M − 1). For example,
if there are three lines go to infinity, they go at 60, 180, and 300 degrees; and if
there are four lines go to infinity, they go at 45, 135, 225, 315 degrees.

(7) The n −M lines going to infinity have asymptotes centered at the real axis at
(σA, 0). The real scalar σA can be calculated by dividing the difference of the
sum of poles minus the sum of zeros by n−M .

(8) The gain value K that corresponds to the crossing point of root loci with the
imaginary axis can be found by RH criterion.

(9) The exact departure point from the real axis can be found by using 1 +L(s) = 0
to define K = K(s) and find the real value of s that makes K(s) reach maximum.

26PID and Root Locus https://www.youtube.com/watch?v=zlG2sDEG5yQ

https://www.youtube.com/watch?v=zlG2sDEG5yQ
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Example: consider the control of the magnetically levitated ball with the plant
transfer function as 1/(s2 − 16). Try to explain why adding PD control is helpful for
stabilization but adding PI control is not enough. Furthermore, how about adding a
PID controller?

9.4. Time Delay and Padé Approximation

In practice, time delay appears as the dead time of actuator. During dead time, the
actuator is not responsive regardless of the command. In continuous time domain,
dead time can be modelled as time delay.

The time delay in time domain is modelled using delta function δ(t−Td). Its Laplace
transform is e−sTd , which can be written as Taylor series with a change of variable
x = sTd

e−x =

∞∑
n=0

(−x)n

n!
= 1− x+

1

2
x2 − 1

6
x3 + · · ·

which is a polynomial having infinite number of states (or zeros if you view e−sTd as
a transfer function).

Root locus cannot handle infinite number of poles or zeros. If you run the following
script in MATLAB

1 s = zpk(0, [], 1);
2 L = exp(-s)/(s+1)/(s+2)
3 rlocus(L)

you will get error message: “Error using DynamicSystem/rlocus (line 65) The ”rlocus”
command cannot be used for continuous-time models with delays. Use the ”pade”
command to approximate delays.”

In contrast, frequency domain analysis tool works well for time delay, because the
time delay can be easily accounter for as the phase delay of frequency response.

The Padé approximation (of e−sTd = e−x) of order [m/n] is the rational function

R (x) =

∑∞
j=0 ajx

j

1 +
∑∞

j=1 bjx
j

=
a0 + a1x+ a2x

2 + · · ·+ amx
m

1 + b1x+ b2x2 + · · ·+ bnxn

The Padé table summarizes the commonly used approximations, where only the diag-
onal components introduce pure phase delay, i.e., those have a gain of 0 dB. 27

9.5. Revisit Nonminimum Phase System

1 %% Delay and nonminimum phase system
2 Td = 1.0; % time delay = 1 sec is fair
3 P = tf([1,2], [1,3,1])
4 P_delay = tf([1,2], [1,3,1], ’InputDelay’, Td)
5 P_RHP_zero = tf([-1,2], [1,3,1])
6 [n,d] = pade(Td, 2)
7 P_RHP_pade = P * tf(n,d)
8 options = bodeoptions;

27https://en.wikipedia.org/wiki/Pad%C3%A9_table#An_example_%E2%80%93_the_exponential_function

https://en.wikipedia.org/wiki/Pad%C3%A9_table#An_example_%E2%80%93_the_exponential_function
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9 options.PhaseWrapping = ’on’;
10 subplot(221); bode(P, P_delay, P_RHP_zero, P_RHP_pade, options);

grid; h1 = findobj(gcf,’type’,’line’); set(h1,’linewidth’,2);
11 subplot(222); step(P, P_delay, P_RHP_zero, P_RHP_pade); grid; h1 =

findobj(gcf,’type’,’line’); set(h1,’linewidth’,2);
12
13 % closed loop response
14 P = P/(1+P)
15 P_delay = P_delay /(1+P_delay)
16 P_RHP_zero = P_RHP_zero /(1+P_RHP_zero )
17 P_RHP_pade = P_RHP_pade /(1+P_RHP_pade )
18 subplot(223); bode(P, P_delay, P_RHP_zero, P_RHP_pade, options);

grid; h1 = findobj(gcf,’type’,’line’); set(h1,’linewidth’,2);
19 subplot(224); step(P, P_delay, P_RHP_zero, P_RHP_pade); grid; h1 =

findobj(gcf,’type’,’line’); set(h1,’linewidth’,2);
20
21 legend

The step response of a RHP zero initially moves to the wrong direction is because the
step input consists of both low and high frequency components. The RHP zero system
will respond to high frequency input with much higher phase delay, and especially
those near 180◦

9.6. Rhor’s Counter Example

Consider the transfer function from torque to rotor shaft angular speed

P =
2

s+ 1
(58)

when the motor

PRhors =
2

s+ 1

229

s2 + 30s+ 229
(59)

If a constant gain controller is used, find the maximum value for K that makes closed
loop system unstable.
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10. Lead Lag Compensator

We have learned root locus method and we will now see how it is useful in understand-
ing the effect of lead-lag compensator on the system poles and zeros.

In this course, compensator and controller are the same thing and there is no dif-
ference between the two.

10.1. Overview

Equivalent statement.

• Zero means open loop zero.
• Pole means open loop pole.
• Root means closed loop pole.
• A simple second order open loop transfer function with a marginally stable pole

is the same as a first order system that is specified to track a ramp input with
finite steady state error.

Fundamentally, there are five combinations in terms of design tools and design
objectives.

• Integrator is used to modify the system type, in order to meet the steady state
error constant requirement.
• Bode plot can be used to estimate the phase margin introduced by the phase

lead compensator.
• Root locus design of phase lead compensator basically puts a zero to the left of

the dominant poles for adding damping (i.e., increasing damping ratio ζ).
• Bode plot aided design of phase lag compensator can also introduce phase margin

by moving the gain crossover frequency to the left of Bode plot.
• Root locus design of phase lag compensator focuses on steady state error reduc-

tion without changing the system type. This is achieved by adding a pair of real
pole and zero near the origin, and their distance to the dominant poles must be
sufficient.

Relation to PD and PI controller.

• PD is an extreme case of phase lead compensator.
• PI is an extreme case of phase lag compensator.

10.2. Phase Lead Compensator

Lead compensator can be used to add damping to dominant poles in root locus plot,
and add phase margin in Bode plot. Also, the use of a lead compensator extends
the bandwidth of a feedback system.

Root locus is a very satisfactory approach when the specifications are given in terms
of percent overshoot and settling time, thus specifying the ζ and ωn of the desired
dominant roots in the s-plane [1].

When the design specifications include an error constant requirement, the Bode plot
method is more suitable, because the root locus method often results in an iterative
design procedure when the error constant is specified [1].
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10.3. Lead Compensator Design Using Bode Plot

The peak phase margin can be calculated using the ratio between the

10.4. Lead Compensator Design Using Root Locus

Knowing the relation between phase margin and damping ratio of a standard second
order system would be very helpful

10.5. Phase Lag Compensator

Note that the steady state error depends on the ratio of the zero location and pole
location. By putting the zero and pole of the lag compensator far away from the
dominant poles, the lag compensator can be used to reduce the steady state error
while keeping the performance of the dominant pole unchanged.

10.6. PID Control in a Control Theory Perspective

The proportional term is the essence of the feedback control.
The derivative term can be understood as adding an open loop zero that improves

the damping of the closed loop system.
The integral term puts the transfer function from the disturbance to error, P (s)S(s),

to zero with dc input.
Arbitrary pole-placement can be done when the used controllers are of the same

order as that of the plant.
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Appendix A. Which to Use, MATLAB or Python?

[Important!] The code snippets in this document has preceding line numbers. It is
possible to avoid selecting the line numbers.

• Holding ALT, and use box select in Adobe Acrobat Reader.
• Holding CTRL+ALT, and use box select in SumatraPDF.

MATLAB is friendly for beginners for having complete help documents and nice
IDE. The use case to choose python over MATLAB is when I need to produce profes-
sional figure or make GUI. I am not suggesting there is no way to produce nice looking
figure using MATLAB,28 but MATLAB is not a programming language and its OOP
support is not as intuitive as others. There is an MATLAB computability mode for
the python-control package.29 This course will use python package DearPyGUI for
interactive learning if needed. DearPyGUI can take advantage of GPU and does not
need a GUI editor like PyQt6 or PySide2.

Appendix B. Revisit Linear Map

Consider a Rn space that is spanned by a series of n basis vectors:
A matrix is the mapping of the basis vectors.
The determinant is the length, area, and volume of the vectors.
Some linear map loses information during the mapping. Those information is

mapped into a null space.

Appendix C. Review Math Concepts: Two Kernels

A brief refresh on the concepts of kernels from the two major math courses is sufficient.

C.1. Kernel in Integral Transform

The integral transform is a math operation that changes variable of interest, and it
has a general form as follows

F (α) =

ˆ b

a
f (t)K (α, t) dt (C1)

where K (α, t) is known as the kernel of the integral transform.
There are three integral transforms will be used in this course: Laplace transform,

28See e.g., https://github.com/adinatan/plot_darkmode/tree/main
29See ReadTheDocs https://python-control.readthedocs.io/en/latest/matlab.html or Source

Forge https://python-control.sourceforge.net/manual/matlab_strings.html

https://github.com/adinatan/plot_darkmode/tree/main
https://python-control.readthedocs.io/en/latest/matlab.html
https://python-control.sourceforge.net/manual/matlab_strings.html
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Fourier transform and convolution:

F (s) =

ˆ ∞
0−

f (t) e−stdt, s ∈ C (C2a)

F (jω) =

ˆ ∞
0−

f (t) e−jωtdt, ω ∈ R (C2b)

F (t) =

ˆ ∞
0−

f (τ) δ (t− τ) dτ , τ ∈ R (C2c)

where j =
√
−1; δ(·) is the impulse function or Dirac delta function that is nonzero

only when t ∈ [0−, 0+], the 0’s superscript sign indicates one-sided limit—minus/plus
sign indicates the limit approaches 0 from left/right side; signal f(t) is assumed to
be a causal signal, i.e., f(t) = 0 when t < 0−, and this is why the integral begins at
t = 0−.

C.2. Kernel in Linear Algebra

The rank–nullity theorem states that the number of columns of a matrix A is the sum
of the rank of A and the nullity of A. This course is mainly concerned with the real
matrix, so we can re-state rank–nullity theorem as follows

rank (A) + nullity (A) = n, A ∈ Rm×n (C3)

where the nullity is the dimension of kernel. The kernel of a linear transform A is the
space (i.e., a set of points) that is going to be mapped into a point (i.e., the origin):

ker (A) = {x ∈ Rn | Ax = 0} (C4)

and therefore, kernel is also known as the null space of matrix A. Looking at the
definition of kernel (C4), we realize that

Av = 0 = 0v

which suggests matrix A has at least one eigenvalue that equals to 0.
In the sequel, we will assume A is a square n-by-n matrix, i.e., m = n.

C.2.1. Eigenvalue and Eigenvector

The eigenvalue λ ∈ C of a matrix A satisfies:

Av = λv (C5)

in which the vector v ∈ Rn is known as eigenvector. When λ ∈ R, an eigenvector v only
experiences a scale of λ after being transformed by matrix A. The eigenvectors can be
used to span a space, known as eigenspace, and the following matrix diagonalization
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becomes possible:

[v1, v2, · · · , vn]A = [v1, v2, · · · , vn]


λ1 0 0 0
0 λ2 0 0
0 0 · · · 0
0 0 0 λn



⇒ A = [v1, x2, · · · , vn]


λ1 0 0 0
0 λ2 0 0
0 0 · · · 0
0 0 0 λn

 [v1, v2, · · · , vn]−1

(C6)

where vi, i = 1, 2, · · · , n is eigenvector.
There are two matrix properties related to eigenvalues30

• The trace of a matrix trA equals to the sum of eigenvalues.

trA =

n∑
i

λi (C7)

• The determinant of a matrix detA equals to the product of eigenvalues.

detA =

n∏
i

λi (C8)

By finding the kernel or nullspace of the matrix (A − λI), 31 we can solve for the
eigenvalues of matrix A:

(A− λI) v = 0 = 0v (C9)

which suggests that 0 is an eigenvalue of matrix (A− λI). Using (C8), the above
linear equations (C9) can be turned into a polynomial equation using the determinant
of matrix A:

det (A− λI) = 0

which gives the eigenvalues of matrix A.

C.2.2. Eigenvalue and Eigenfunction

There is an analogy between eigenvector and exponential mode, if we replace the linear
operator A defined in a space of finite dimension with derivative d

dt defined in a space

of infinite dimension. The “eigenvector” of operator d
dt is the exponential function.32

30https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Additional_properties_of_eigenvalues
31https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Eigenspaces,_geometric_multiplicity,_and_the_
eigenbasis_for_matrices
32https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Eigenvalues_and_
eigenfunctions_of_differential_operators

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Additional_properties_of_eigenvalues
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Eigenspaces,_geometric_multiplicity,_and_the_eigenbasis_for_matrices
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Eigenspaces,_geometric_multiplicity,_and_the_eigenbasis_for_matrices
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Eigenvalues_and_eigenfunctions_of_differential_operators
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Eigenvalues_and_eigenfunctions_of_differential_operators
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This can be shown by solving the following eigenvalue equation:

d

dt
f (t) = λf (t)

⇒ df (t)

f (t)
= λdt

⇒ ln |f (t)− f(0)| = λt

⇒ f(t) = f(0)eλt

(C10)

in which eλt is formally known as the eigenfunction. The exponential modes can be
used to describe the solution of O.D.E.

C.2.3. Matrix Exponential

For a square matrix A, the matrix exponential is defined in terms of the following
“Taylor series”-alike matrix power series:33

eAt =

∞∑
k=0

tkAk

k!
= I +At+

AA

2!
t2 +

AAA

3!
t3 + · · ·

= [v1, v2, · · · , vn] exp



λ1 0 0 0
0 λ2 0 0
0 0 · · · 0
0 0 0 λn

 t
 [v1, v2, · · · , vn]−1

(C11)

As a result, the solution to the following state space model

d

dt
x = Ax

becomes

x (t) = x (0) eAt

= x (0) [v1, v2, · · · , vn] exp



λ1 0 0 0
0 λ2 0 0
0 0 · · · 0
0 0 0 λn

 t
 [v1, v2, · · · , vn]−1

where note x is the vector of state variables, and vi is eigenvector, and they are related
by the homogeneous matrix A.

In addition, the following equality holds for determinant of matrix exponential:

etrA = det
(
eA
)
6= 0

Appendix D. Five Ways Solving Ordinary Differential Equations

See “Five Levels for Differential Equations in Physics” by Physics with Elliot https:
//www.physicswithelliot.com/odes-help-room-notes

33https://zhuanlan.zhihu.com/p/57051153

https://www.physicswithelliot.com/odes-help-room-notes
https://www.physicswithelliot.com/odes-help-room-notes
https://zhuanlan.zhihu.com/p/57051153
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Appendix E. Zeros and Zero dynamics

Appendix F. Passivity and Stability Margin

The stability margin of a control system is reduced when there are unmodelled dy-
namics in the plant. See video Brian’s video “Passivity-Based Control to Guarantee
Stability”, where the passivity based tuning guideline has been used to improve the
relative stability of a LQG controller.

The positive real (PR) condition needed in the KYP lemma34 is related to passivity.
There is a dedicated book written by Remeo Ortega for passivity based control.

Appendix G. Fourier Analysis and Time-Frequency Domain Analysis

G.1. Frequency Response and Fourier Analysis

Figure G1. The difference between Bode plot and Fourier analysis. Screenshot from Youtube video:

PF4fSRwPk5I.

The Bode plot is about relation between input and output signal. The Fourier
analysis is concerned with signal of certain periods. See Fig. G1.

G.2. Time Frequency Domain Analysis

The DFT works fine for a non-periodic signal such as Heaviside step function, in
which only the frequencies of the bins are reliable, while the magnitudes of the bins
are dependent on the signal duration.

A better tool for analyzing non-periodic rich frequencies signal is the time-frequency
analysis. Here is a sample code.

1 %% Time-Frequency Analysis
2 clear

34https://en.wikipedia.org/wiki/Kalman%E2%80%93Yakubovich%E2%80%93Popov_lemma

https://en.wikipedia.org/wiki/Kalman%E2%80%93Yakubovich%E2%80%93Popov_lemma


EE160 Fall’23 77 Chen, Jiahao

3 clc
4
5 Fs = 1e3 % Sampling frequency
6
7 time = 0:1/Fs:10-1/Fs; % make length an even number of points for

fft
8 a = 0*time;
9 b = sin(2*pi*time).*cos(2*pi*100.*time) + sin(2*pi*10*time);

10 b = sign(time);
11 c = 0*time;
12 signal = [a b c];
13 subplot(131)
14 pspectrum(signal, Fs, ’spectrogram’, ’Reassign’, true, ...
15 ’FrequencyLimits’, [0 150], ’TimeResolution’, 1.0)
16
17
18 T = 1/Fs; % Sampling period
19 L = length(b); % Length of signal
20
21 % t = (0:L-1)*T; % Time vector
22 % S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
23 % X = S + 2*randn(size(t));
24 %
25
26 subplot(132)
27 plot(signal)
28 title("Signal Corrupted with Zero-Mean Random Noise")
29 xlabel("t (milliseconds)")
30 ylabel("X(t)")
31
32 Y = fft(b);
33 Y = fft(signal);
34
35 P2 = abs(Y/L);
36 P1 = P2(1:L/2+1);
37 P1(2:end-1) = 2*P1(2:end-1);
38
39 f = Fs*(0:(L/2))/L;
40 subplot(133)
41 plot(f, P1, ’.’)
42 title("Single-Sided Amplitude Spectrum of X(t)")
43 xlabel("f (Hz)")
44 ylabel("|P1(f)|")

Appendix H. Pending Proofs

As a fundamental course in the field of control, there are lacking proofs for a few
established results.

• Routh-Hurwitz Criterion?
• Why frequency response can be obtained by substituting s = jω?
• Why does contour mapping work?
• Argument principle.
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Appendix I. Textbook Errata

The following errata can be made to improve [1].

• The Laplace transform table in the appendix is not 100% correct.
• The pole should be −p and zero should be −z—the minus sign is occasionally

missing in the text.
• The definition of nonminimum phase system is not complete.
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