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ABSTRACT
The course is arranged in a manner of “from theory to engineering”. This is one
essential core course to cover the four major courses, including electric machinery
(steady state behaviors, winding design), ac machine transient analysis (winding
function, mathematical modeling, numerical simulation), machine design (advanced
star of slots plot, multi-phase machine theory, maxwell stress tensor), and motor
control (with an emphasis on engineering practices, e.g., system identification, com-
missioning, controller tuning, disturbance observer, inverter modeling).
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1. Chapter 1: Modeling of Electric Machine

Electric machine is governed by both electrical dynamics and mechanical dynamics,
and the mathematical modeling of the dynamics stems from physics.

1.1. Review on Newton’s Second Law

It all begins with the concept of motion (i.e., momentum) of a particle:

~p = m~v (1)

Here, ~p is momentum, m is the mass of the particle, and ~v is the derivative of the
particle’s position with respect to time t.

The Newton’s second law of motion states that “the change of motion of an object
is proportional to the force impressed; and is made in the direction of the straight line
in which the force is impressed.”1 The first half of the sentence defines the size of the
force, and second half defines the direction of the force. That is,

d

dt
~p = m

d

dt
~v = ~F (2)

The assumption of a particle (a point mass) is convenient such that the force vector
~F is applied where the point mass locates.

1.2. Rotational Version of Newton’s Second Law

Instead of a point mass, we are interested in describing the motion of a rigid body
inside which a point remains fixed. According to Euler’s rotation theorem,2 we shall
put the origin of our Cartesian coordinate system to that fixed point of the rigid body,
and derive the rotational version of (2).

The fixed point of the rigid body implies that any force attempting to change the
distance between fixed point and another point of the rigid body has no effect. The
“effective force” to change the angular motion of the rigid body about the fixed point
or origin is known as torque:

~T = ~r × ~F (3)

where ~r is a vector starts at origin and points to the action point of the force vector.
Therefore, (2) can be rewritten in terms of torque:

m~r × d

dt
~v = ~r × ~F

⇒ J
d

dt
~Ω = ~T

⇔ J
d

dt
Ωẑ = T ẑ (4)

1Quoted from Wikipedia: https : //en.wikipedia.org/wiki/Newton%27s laws of motion#Second
2https : //en.wikipedia.org/wiki/Euler%27s rotation theorem
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Figure 1. The cross section of a cylinder with mass M and radius R, and it is made of permanent magnet.

where note the speed of the particle must be line speed and line speed equals angular
speed cross product radius: ~v = ~Ω×~r, the moment of inertia of a point mass is derived
as J = mr2, and ẑ is the unit vector of z-axis—this assumes that the axis of rotation
is z-axis of the reference frame.

1.3. Mechanical Dynamics of an Electric Machine

To our interest, let’s derive the motion dynamics of a solid cylinder (with mass M and
radius R, ) that rotates about its center axis parallel to ẑ. Basically, we need to apply
the rotational version law (4) to every particle that makes up the cylinder:

(ΣJ)
d

dt
Ω = (ΣT ) (5)

where note all particles share the same angular speed of Ω [rad/s], and the sum of the
rotational inertia can be calculated by integrating the mass of the infinitesimally thin
rings:

(ΣJ) =

ˆ R

0
ρ (2πrdr) r2 =

M

πR2

(
2π

1

4
R4

)
=

1

2
MR2 = Js (6)

where the area density of the cylinder is ρ = M
πR2 [kg/m2] and Js denotes the shaft’s

moment of inertia. The practical meaning of this result is to allow us to estimate the
inertia of a rotor shaft by measuring its radius and mass.

Based on the sources of the torque, we can decompose the torque sum into an
unknown load torque TL and an electromagnetic torque Tem that is controllable:

(ΣT ) = Tem − TL (7)

Plug the new variables defined in (6) and (5) into (7), and the mechanical dynamics
governing the angular motion of the rotor shaft around z-axis are derived as follows

Js
d

dt
Ω = Tem − TL (8)

where Ω is defined as the change rate of the angular location Θ of the solid cylinder:

Ω =
d

dt
Θ (9)
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Figure 2. One phase of a generic inductive electric circuit linking to external magnetic field. (a) realistic
drawing; (b) symbolic drawing.

and the rotational kinetic energy of the mechanical system is

WΩ =
1

2
JsΩ

2 (10)

The mechanical input power and work to the electric machine are respectively as

Pmech,in = −TLΩ (11)

Wmech,in =

ˆ t

0
Pmech,indt (12)

where the negative sign indicates that the mechanical sources are in fact taking energy
away from our system when TL > 0.

1.4. Review on Circuit Fundamentals

Considering a circuit shown in Fig. 2, we have the following equation as per Kirchhoff’s
voltage law:

u1 = R1i1 + e1 (13)

where the voltage across the inductance L1 is denoted as e1. The direction of the
voltage e1 is defined such that it counters the terminal voltage u1, hence also known
as counter electromagnetic force.

1.5. The Energy Method

Recall that voltage times current is electric power, and integrating power over time
gives electric work:

Welec,in =

ˆ t

0
u1(t)i1(t)dt =

ˆ t

0
i21(t)Rdt︸ ︷︷ ︸
Heat

+

ˆ t

0
i1(t)e1 (t) dt︸ ︷︷ ︸

Magnetic energy

,WCu +WΦ (14)

where there are two kinds of work generated in the circuit: the copper loss WCu and
the magnetic energy WΦ. Note (14) is valid only if there exists no mechanical motion,
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i.e., Ω = 0.
In case of a circuit involving mechanical part in motion, we must revise (14) to

include the stored mechanical energy. Recall that the first law of thermodynamics
states that “energy cannot be created or destroyed; it can only be converted from one
form to another”. Therefore, the stored mechanical energy must be further added to
the right hand side of (14) to give

Welec,in +Wmech,in = WCu +WΦ +WΩ (15)

which reads [3]

 Energy input
from electric
sources

+

 Energy input
from mechanical
sources

 =

 Energy
dissipated
as heat

+

 Stored
magnetic field
energy

+

 Stored
mechanical
energy


(16)

where we have assumed only copper loss is contributing to heat.
Taking time derivative on both sides of (15) yields

Pelec,in + Pmech,in = PCu +
d

dt
WΦ +

d

dt

(
1

2
JsΩ

2

)
⇒ e1i1 − TLΩ =

d

dt
WΦ + JsΩ

d

dt
Ω

⇒ e1i1 − TLΩ =
d

dt
WΦ +Ω (Tem − TL)

⇒ e1i1 =
d

dt
WΦ + Tem

d

dt
Θ (17)

where, apparently, Tem and WΦ are unknown, and so is e1. However, if we can make
sure the magnetic field energy WΦ is time-invariant, the torque can be derived as
simply as (see, e.g., [4, (15)])

(17)⇒ Tem =
e1i1 − d

dtWΦ

Ω
(18)

which is not generally applicable for calculating torque, unless we have an expression
for WΦ. Note (17) holds for any initial conditions. Let Θ = Const., and from (17), we
can certainly derive an expression for magnetic field energy as a function of time t:

WΦ(t) =

ˆ t

0
e1i1dt+ Const. (19)

Here, the constant term Const. corresponds to the magnetic field energy due to the
permanent magnet (PM), which exists before t = 0. But, what is the voltage across
the inductance e1?

1.6. Review on Faraday’s Law of Induction

Faraday’s law of induction states that “The electromotive force around a closed path
is equal to the negative of the time rate of change of the magnetic flux enclosed by
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the path.”3

e = − d

dt
Φ1 (20)

where Φ1 denotes the magnetic flux enclosed by one turn of the coil. This is a macro-
scopic result of the fact that the curl of electric field equals to the time derivative of
a magnetic field:

∇× ~E = −∂
~B

∂t
(21)

The negative sign is explained by the Lenz’s law, and one way to interpret it is that
if a current is induced by the electromotive force e, the induced current’s resulting
magnetic field is in a direction that is against the original magnetic field.

1.6.1. Flux Linkage in an Electric Circuit

Flux linkage ψ1 is a useful alternative to magnetic flux Φ1 in an electric circuit, and
it is defined as the integration of counter electromotive force e1 over time:

ψ1 = ±
ˆ
e1dt (22)

The main difference from the original law of induction (20) is that ψ1 corresponds to
the total linkage of an arbitrary coil #1 that has N1 turns.

The question left is what sign should it take in (22)?

1.6.2. Motoring Convention

For this course, we are mainly studying the motoring operation of an electric machine,
such that the electrical power is converted into mechanical power.4

The motoring convention states that by looking at the terminals of the circuit: (1)
positive voltage generates positive current, giving positive power; (2) positive current
generates positive flux linkage; (3) positive torque results in positive rotation:

1. u1 > 0⇒ i1 > 0⇒ P1 = u1i1 > 0

2. i1 > 0⇒ ψ1 > 0

3. Tem > 0⇒ Ω > 0

(23)

Consider R1 = 0, we have u1 = 0 × i1 + e1 > 0 and i1 > 0, ψ1 > 0. As a result, (22)
takes the plus sign. Taking time derivative at both sides of (22) yields:

e1 =
d

dt
ψ1 = N1

d

dt
Φ1 (24)

The last equal sign is only valid for a coil #1 that has N1 turns and each turn links
the same magnetic flux Φ1. By (24), we view the electromotive force as a help and

3https : //en.wikipedia.org/wiki/Faraday%27s law of induction
4In regenerating operation, the mechanical power is converted into electrical power using the electric machine–

known as the generator.
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applies positive electromotive force leading to positive electrical power input.

1.6.3. Flux Linkage as a Current State Integral

In motoring convention, it is mentioned that the positive current leads to positive flux
linkage. This implies that other than the time integral definition for flux linkage (22),
there is also a current-related definition.

If you find this incomprehensible, consider the momentum of point particle ~p. It
can be calculated as the integral of force: ~p =

´
~Fdt but it is in fact defined as

~p = md~r
dt = m~v, that is, an inertia quantity times the velocity. We are going to define

the equivalent inertia quantity for an electrical charge Q1 and its “velocity” dQ1

dt = i1.
Let’s assume the only source to the electromotive force is i1. In this situation, the

relation between flux linkage and current is defined as the self-inductance:

e1 =
d

dt
ψ1 =

dψ1

di1

d

dt
i1 = L1

d

dt
i1

⇒L1 ,
dψ1

di1
⇒dψ1 = L1di1

(25)

This is known as the small signal definition of self-inductance—which literally means
flux linkage change per current change. Based on the definition for inductance, the
flux linkage can as well be obtained as an integral of inductance over current:

ψ1 =

ˆ i1

0
L1 (i1) di1 + C (26)

where the inductance can be a modeled as a function of current to take into consid-
eration of the saturation of iron core. Note the constant C is zero because we have
assumed i1 is the only source in this world. If self-inductance L1 is not a function
of current, we have ψ1 = L1i1 = L1

dQ1

dt ., implying that the self-inductance L1 is the
inertia of electrical charge Q1.

However, unlike a point particle, the “momentum” of an electrical charge can have
multiple sources. Without loss of generality, when there are two magnetic sources, the
differential of the flux linkage becomes:

dψ1 =
∂ψ1

∂i1
di1 +

∂ψ2

∂i2
di2 (27)

which can be used to calculate flux linkage in terms of states i1 and i2 as follows

⇒ ψ1 (i1, i2) =

ˆ (i1,i2)

(0,0)
dψ1 =

ˆ (i1,0)

(0,0)

∂ψ1

∂i1
di1+

ˆ (i1,i2)

(i1,0)

∂ψ1

∂i2
di2 = L1i1 + L12i2 (28)

where the integral path independency is valid only if the magnetic circuit is linear and
time-invariant, such that inductance is not a function of currents or rotor angle Θ. We
will soon have a refresh on the math involved above. The mutual inductance L12 is
defined as the partial derivative of ψ1 with respect to excitation i2.
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Figure 3. A duality of the physics between a particle and an electric charge.

1.6.4. Electric Charge and Point Particle: A Duality

Let’s stop for a moment dwelling on the name “electromotive force”. By following the
motoring convention, we have defined the equivalent “law of motion” to an electrical
charge Q1: “the time rate of an electric charge’s “momentum” ψ1 = L1

dQ
dt equals to

the external (electromotive) force e1.”
See Fig. 3 for a better understanding of what flux linkage really is or mean in an

electric circuit by comparing the physics about a point particle with that of an electric
charge. The physics about a particle include: position, velocity, momentum, energy,
law of motion, and power (including active power and reactive power).

1.7. Review on Multi-variable Calculus

Plug (24) into (17), and multiply both sides with dt to remove the time dependency:

dWΦ = i1dψ1 − TemdΘ (29)

What is this?

1.7.1. Exact Differential

The exact differential of a scalar function Q(x, y, z) that depends on three states is
defined as

dQ =
∂Q

∂x
dx+

∂Q

∂y
dy +

∂Q

∂z
dz

dQ = ~∇Q (x, y, z) · (dx,dy,dz)
(30)
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where the gradient is defined as

~∇Q =
∂Q

∂x
x̂+

∂Q

∂y
ŷ +

∂Q

∂z
ẑ =

(
∂Q

∂x
,
∂Q

∂y
,
∂Q

∂z

)

where ~∇ is the nabla operator ~∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
.

1.7.2. Gradient Theorem

The gradient theorem states that the integral of an exact differential is independent
of the choice of an integral path between the two endpoints, i.e., line integral of exact
differential has path independency:

ˆ (x,y,z)

(x0,y0,z0)
dQ =

ˆ (x,y,z)

(x0,y0,z0)
∇Q (x, y, z) · (dx,dy,dz) = Q (x, y, z)−Q (x0, y0, z0) (31)

This line integral can be performed along any path the connects the two endpoints
(x0, y0, z0) and (x, y, z).

1.8. The Conservative Nature of Magnetic Field Energy

Equation (29) reveals the exact differential of the magnetic field energy:

dWΦ (ψ1, Θ) =
∂WΦ

∂ψ1

∣∣∣∣Θ dψ1 +
∂WΦ

∂Θ

∣∣∣∣ψ1

dΘ (32)

which implies that the system that stores magnetic field energy is lossless and is solely
determined by the state variables of flux linkage ψ1 and cylinder’s angular position Θ.

Comparing between the math in (32) and the physics in (29), we know the elec-
tromagnetic torque Tem is the negative partial derivative of magnetic energy WΦ with
respect to cylinder angle Θ:

∂WΦ

∂Θ

∣∣∣∣ψ1

= −Tem (33)

Our objective shall now be changed to derive an expression of WΦ at an arbitrary
state of (ψ1, Θ) (rather than at time t) without needing to know the electromagnetic
torque Tem, and this is possible because the line integral of dWΦ has path independency.
To this end, we need to choose an initial state (ψ1, Θ) such that Tem ≡ 0. We know
when WΦ = 0, the electromagnetic torque Tem is always zero. However, as indicated
in (19), at t = 0, there is already constant magnetic energy due to the permanent
magnet (PM).

In order to create a null state of WΦ, there are two ways to deal with the PM,
the fictitious winding method [3, Sec 3.7] and the equivalent field winding method [5,
Ch. 3]. The former puts a fictitious winding around the PM to exactly cancel the
magnetic field of the PM, hence allowing the integration starts at a zero magnetic
energy state; while the latter simply models the PM as a field winding, i.e., the PM or
the field winding must also be excited by external electric sources in order to become
magnetic in the first place.
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We are going to use the second approach. Let’s denote the additional circuit that
models the PM as the (m+ 1)-th circuit, and till now, phase number m is 1, meaning
that we have only 1 armature circuit. This additional electric circuit is a new electric
source to the system, so we need to rewrite (17), (29) accordingly

(17)⇒ e1i1 + em+1im+1 =
d

dt
WΦ + Tem

d

dt
Θ (34)

(29)⇒ dWΦ = i1dψ1 + im+1dψm+1 − TemdΘ (35)

Now, we are able to make WΦ = 0 by letting ψ1 = ψm+1 = 0. Since there is no
magnetic energy, the electromagnetic torque must be zero:

WΦ (ψ1 = 0, ψm+1 = 0, Θ)⇒ Tem = 0 (36)

otherwise if Tem 6= 0 when WΦ = 0, one can build a perpetual motion machine based
on this phenomenon, e.g., integrating over rotor angle Θ before Tem changes its sign
to give: WΦ =

´
−TemdΘ 6= 0.

Since dWΦ in (35) is an exact differential, we can integrate over one state variable
at a time and during the integration, other two independent state variables are fixed.
Therefore, in order to reach arbitrary state of (ψ1, ψm+1, Θ) from (0, 0, 0), it is of high
priority to integrate over Θ, which allows Θ to pick any value. Next, without lost
of generality, we integrate over state ψ1 by keeping ψm+1 = 0 and Θ = Const., and
finally, we integrate over state ψm+1 by keeping the other two states constant. In math
language, this becomes:

WΦ (ψ1, ψm+1, Θ) =

ˆ Θ

0
Tem (ψ1 = 0, ψm+1 = 0, Θ) dΘ

+

ˆ ψ1

0
i1 (ψ1, ψm+1 = 0, Θ) dψ1 +

ˆ ψm+1

0
im+1 (ψ1, ψm+1, Θ) dψm+1 (37)

The above integration is valid because we are dealing with a conservative system to
which the work done by force or current is independent of path.

1.9. Mutual Flux Linkage and Mutual Inductance

According to the exact differential of the flux linkage (27), we have a formula to
calculate flux linkage of circuit #1 as follows5

ψ1 =

ˆ i1

0
L1di1 +

ˆ im+1

0
L1(m+1)dim+1 (38)

where L1 denotes the self-inductance and L1(m+1) is the mutual inductance. In (38),
the magnetic flux lines passing through the coil of circuit #1 have two sources, the
first term is self linkage and the second one is mutual linkage.

5To be specific, (38) is valid only if a phenomenon called cross saturation does not occur, i.e., L1 is not

dependent on im+1, and Lm+1 is not dependent on i1. In case of cross saturation, the flux linkage and the
associated magnetic flux can only be determined with the help of finite element analysis softwares.



EE275 Spring’23 15 Chen, Jiahao

1.10. Assumption of Non-saturated Magnetic Circuit

In order to get an analytical result, the magnetic circuit is assumed to be non-saturated
and this assumption leads to the following large signal definition of (self and mutual)
inductance:

ψ1 = L1i1 + L1(m+1)im+1

ψm+1 = L1(m+1)i1 + Lm+1im+1

⇔
[

ψ1

ψm+1

]
=

[
L1 L1(m+1)

L(m+1)1 Lm+1

] [
i1
im+1

]
(39)

Note we can rewrite (39) in terms of matrix and vector and note[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
As a result, the currents can be explicitly expressed in terms of inductances and flux
linkages as follows:

i1 (ψ1, ψm+1 = 0, Θ) =
Lm+1ψ1 − L1(m+1)ψm+1

D
=
Lm+1ψ1 − 0

D
(40)

im+1 (ψ1, ψm+1, Θ) =
−L1(m+1)ψ1 + L1ψm+1

D
(41)

with the determinant of the inductance matrix: D = L1Lm+1 − L2
1(m+1), and we are

now able proceed the integration in (37) to reach:

WΦ (ψ1, ψm+1, Θ) = 0 +
Lm+1

2D
ψ2

1 +

(
L1

2D
ψ2
m+1 −

L1(m+1)

D
ψ1ψm+1

)
(42)

where though not indicated, note the inductance is allowed to be dependent on Θ.

1.11. Torque Expression (Single Phase m = 1)

The following equation holds between exact differential and partial differentials:

dWΦ (ψ1, ψm+1, Θ) =
∂WΦ

∂ψ1

∣∣∣∣ψm+1

Θ

dψ1 +
∂WΦ

∂ψm+1

∣∣∣∣ψ1

Θ

dψm+1 +
∂WΦ

∂Θ

∣∣∣∣ψ1

ψm+1

dΘ (43)

where each partial derivative must be evaluated with all other states being constants.
Compare the math in (43) to physics in (35), we have again obtained the equation

for calculating the electromagnetic torque Tem as follows

∂WΦ

∂Θ

∣∣∣∣ψ1

ψm+1

= −Tem (44)

However, looking at (42), one realizes that WΦ’s partial derivative with respect to
Θ is not easy to calculate because of the presence of the determinant D(Θ) in the
denominator. Moreover, it is preferred to express the torque in terms of currents instead
of the flux linkages, for currents are easy to measure.
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1.12. The Co-Energy Trick

As a math trick, let’s define co-energy as:

W ′Φ = i1ψ1 + im+1ψm+1 −WΦ (45)

Note that the exact differential of current times flux (which has a dimension of [Nm])
satisfies: d(iψ) = idψ + ψdi, and from (35), we have

dW ′Φ (i1, im+1, Θ) = ψ1di1 + ψm+1dim+1 + TemdΘ (46)

The co-energy can as well be integrated from a null state of (0, 0, 0), via (0, 0, Θ) and
then (i1, 0, Θ), and finally to an arbitrary state (i1, im+1, Θ) as

W ′Φ = 0 +

ˆ i1

0
ψ1 (i1, im+1 = 0, Θ) di1 +

ˆ im+1

0
ψm+1 (i1, im+1, Θ) dim+1

(39)
=

ˆ i1

0

(
L1i1 + L1(m+1) × 0

)
di1 +

ˆ im+1

0

(
L1(m+1)i1 + Lm+1im+1

)
dim+1

=
1

2
L1i

2
1 + L1(m+1)i1im+1 +

1

2
Lm+1i

2
m+1

=
1

2

[
i1 im+1

] [ L1 L1(m+1)

L1(m+1) Lm+1

] [
i1
im+1

]
,

1

2
iTLi

(47)

Note this derivation depends on the non-saturation assumption.
The exact differential from (46) also satisfies

dW ′Φ (i1, im+1, Θ) =
∂W ′Φ
∂i1

∣∣∣∣ im+1

Θ

di1 +
∂W ′Φ
∂im+1

∣∣∣∣ i1
Θ

dim+1 +
∂W ′Φ
∂Θ

∣∣∣∣ i1
im+1

dΘ (48)

Comparing between (48) and (46), the torque is then derived as

Tem =
∂W ′Φ
∂Θ

∣∣∣∣ i1
im+1

dΘ =
1

2
iT
∂L

∂Θ
i (49)

1.13. Example: Single Phase Motor

Consider a single phase motor, i.e., m = 1, and its torque expression is:

Tem =
1

2

∂L1

∂Θ
i21 +

∂L1(m+1)

∂Θ
i1im+1 +

1

2

∂Lm+1

∂Θ
i2m+1 (50)

Now let’s further generalize our discussion by allowing im+1 to be time-varying, which
means that the PM is replaced with a actual field winding having time-varying current:

i1 = I1 cos (φ1)

i2 = I2 cos (φ2)
(51)
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where note φ1 and φ2 are your free design variables. Let’s assume for now the mutual
inductance between two coils is a cosine of electrical rotor angle

L1(m+1) = M cos (nppΘ) (52)

and ∂L1

∂Θ = ∂Lm+1

∂Θ = 0. We will show why this is a valid assumption later.
The torque of this single phase motor is:

Tem = 0 +
∂L1(m+1)

∂Θ
i1im+1 + 0

=
∂M cos (nppΘ)

∂Θ
I1 cos (φ1) I2 cos (φ2)

= −nppI1I2M sin (nppΘ) cos (φ1) cos (φ2)

= −nppI1I2M sin (nppΘ)
cos (φ1 + φ2) + cos (φ1 − φ2)

2

= −nppI1I2M
1

4

[
sin (nppΘ + (φ1 + φ2)) + sin (nppΘ − (φ1 + φ2))

+ sin (nppΘ + (φ1 − φ2)) + sin (nppΘ − (φ1 − φ2))

]
(53)

which is dependent on rotor angle Θ.

1.13.1. AC PM Motor Example

Let φ2 = 0, we have constant field current i2 = I2 and the torque becomes:

Tem =
−nppI1I2M

2
[sin (nppΘ + φ1) + sin (nppΘ − φ1)] (54)

In order to have a non-zero average value over one revolution, we need to eliminate Θ
in sine function. For example, further letting φ1 = nppΘ+φ0, which would require we
measure the rotor angle Θ using a physical sensor, (54) becomes:

Tem =
−nppI1I2M

2
[sin (2nppΘ + φ0) + sinφ0] (55)

The torque is not steady but does have a non-zero average value over one revolution.

1.13.2. DC Motor Example

Figure 4. Commutated parallel-excited dc motor. Photo credit: Douyin user @Dover.



EE275 Spring’23 18 Chen, Jiahao

Let φ1 = φ2 = 0, we have the torque of a dc motor from (54):

Tem = −nppI1I2M sin (nppΘ) (56)

where we shall now emphasize that I1 and I2 are also at our disposal. Keep I2 as a
constant. If we can excite negative current I1 only when the sine function sin (nppΘ)
is positive, the torque will always be positive even though it is not steady. An example
working motor is shown in (4).

1.13.3. Flux Switched Alternator Example

Figure 5. Flux switched alternator with four stator (salient) poles and two rotor (salient) poles. Figure credit:

Rauch and Johnson (1955).

The flux switched alternator has been used as a generator and power supply for
missile guiding system [6], and its working principle is illustrated in Fig. 5. Let the
coils form circuit #1 and PMs form circuit #(m+1). Since the magnetic flux that
links the coils in situation (A) has an opposite sign to that in situation (B), it is
equivalent to say that the mutual inductance L1(m+1) takes values that have opposite
signs between situation (A) and situation (B). Therefore, if we excite proper current,
a torque with non-zero average value can be produced.

1.14. Torque Expression (Multi-Phases)

Now let’s generalize the above results to a system with m phase armature circuits and
an (m+ 1)-th additional equivalent field circuit that models the PM (such that im+1

is a parameter rather than a control input):

Tem =
1

2
iT
∂L

∂Θ
i =

{
1

2

m∑
j=1

i2j
∂Lj
∂Θ

+

m∑
j=1

j−1∑
k=1

∂Ljk
∂Θ

ijik

}

+

m∑
j=1

∂Lj(m+1)

∂Θ
ijim+1 +

1

2
i2m+1

∂Lm+1

∂Θ

(57)
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where the three terms on the right hand side are respectively the reluctance torque,
reaction torque, and the cogging torque. The definition of the current vector and
inductance matrix is accordingly extended as i ∈ Rm+1 and L ∈ Rm+1 × Rm+1. Note
the mutual inductance is allowed to have a negative value.

1.14.1. Reluctance Torque

Reluctance torque is the professional term to describe the force exserted to a piece of
iron by an electro-magnet.6 If ij is direct current (DC), the integral of the reluctance
torque over Θ from 0 rad to 2π rad is zero, because of the periodicity of the inductance
functions. Therefore, in order to generate a non-zero reluctance torque, ij must be
turned off at proper moments dependent on the value of Θ. The sign of ij does not
affect the self linking i2j term in reluctance torque, but affects the other mutual linking
ijik term. For motors with zero mutual inductances Ljk = 0, unipolar semiconductor
power amplifier is sufficient to control the reluctance torque.

 

Figure 6. Illustration of a machine equipped with a two phase winding that works on reluctance torque.

An example reluctance toque with two phase stator winding is shown in Fig. 6. The
rotor iron will be aligned to the center axis of a coil when the current is excited into
the coil, and a reluctance torque is produced by the current.

1.14.2. Reaction Torque

Reaction torque7 specifically refers to the torque due to the interaction between the
armature field and the permanent magnetic field (which is not under our control, i.e.,
im+1 is modelled as a constant). Recall that the (m + 1)-th circuit is virtual, and
therefore the mutual inductance between circuit j and circuit m + 1, i.e., Lj(m+1), is
not ever measured in practice. However, the term Lj(m+1)im+1 does mean the circuit
j has a mutual flux linking due to magnetic field generated by the virtual current
im+1, which is known as the permanent magnet flux linkage of phase j, which can be
measured by measuring the back electromotive force at the terminals of a winding.
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Figure 7. Illustration of a two-stator-slot machine that suffers from cogging torque.

1.14.3. Cogging Torque

The average contribution of cogging torque to mechanical work is zero, because of the
fact that im+1 is a constant and the partial derivative of Lm+1 with respective to Θ is
periodic. The existence of cogging torque is due to the fact the stator iron is slotted
for manufacture purposes (i.e., for putting in stator winding). The amplitude of the
cogging torque can be reduced by choosing a slot-pole combination (stator slot number
Qs and rotor pole pair number npp) such that LCM(Qs, 2npp) is as large as possible.

The most significant cogging torque for a perfectly manufactured machine has a
frequency of LCM(Qs, 2npp) Hz per rotor revolution. For the machine in (7), it is cal-
culated as LCM(Qs, 2npp) = LCM(2, 2×1) = 2 Hz, meaning the cogging torque profile
(or the self inductance Lm+1) repeats twice as the PM rotor rotates 2π mechanical
radians.

In a regular servo motor that has 18 stator slots and 4 pole pair PM rotor, this LCM
is calculated as high as 72 Hz and the amplitude of the cogging torque is reduced as
its frequency increases, so the cogging torque in a perfectly manufactured is negligible
in practice.

The manufacturing of the machine in practice has tolerances on both stator iron
and rotor iron.

• When only stator tolerance exists, the cogging torque has a component that has
frequency of 2npp, 4npp, 6npp, . . . per rotor revolution [7].
• When only rotor tolerance exists, the cogging torque has a component that has

a frequency of Qs/npp, 2Qs/npp, . . . per rotor revolution [7].
• When both stator and rotor tolerance exists, the cogging torque has a component

that has a frequency of 0.5Qs/npp per rotor revolution [8].

6The magnetic flux lines act like a string that pulls the iron piece towards a new location such that the

reluctance in the magnetic circuit is at a minimum.
7Jiahao: I did not find an official source why this torque is called reaction torque, but I do notice “action” and

“reaction” appear in Newton’s third law of motion. Therefore, the reaction torque is the equal and opposite
reaction exserted back to the rotor.
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1.15. Electrical Dynamics in Phase Quantities

The flux linkage expressions (39) can be extended using vector and matrix notations
as simple as

ψ = Li, with L =


L1 L12 · · · L1(m+1)

L21 L2 · · · L2(m+1)
...

...
. . .

...
L(m+1)1 L(m+1)2 · · · Lm+1

 and i =


i1
i2
...

im+1

 (58)

Substituting (58) into the following generalized version of (24), the dynamics of cur-
rents can be derived as:

u−Ri = e =
d

dt
ψ =

d

dt
(Li) =

(
d

dt
L

)
i+L

d

dt
i

⇒ L
d

dt
i = u−Ri− dL

d (nppΘ)

d (nppΘ)

dt
i (59)

where npp is short for “pole pair number” and it is a positive constant that gener-
ally counts how many times the motor back emf repeats during one full mechanical
revolution. For a PM rotor machine, npp is the number of repeat of north-south pole
pairs.

1.16. Brief Summary on Modeling in Phase Quantities

So far, we have derived the full model for electric machines, including the (m+ 1)-th
order electrical dynamics (59), the 2nd order mechanical dynamics (8) and (9), and the
electromechanical energy conversion principle (57) that bridges the gap between the
electrical sub-system and the mechanical sub-system. The (2+m+1)-th order dynamics
are summarized as follows

d

dt
Θ = Ω

Js
d

dt
Ω = Tem − TL =

1

2
iT
∂L

∂Θ
i− TL

L
d

dt
i = u−Ri− dL

d (nppΘ)

d (nppΘ)

dt
i

(60)

However, the modeling is not complete as the inductance function L(Θ) has not
been defined. In other words, the machine geometry and winding distribution are not
defined. Great simplification can be made to the inductance matrix L, if we put the
armature circuits in a symmetric configuration, and use a uniform air gap, such that,
for a three phase stator armature, L1, L2, L3, L12, L23, L31, Lm+1 are not dependent on
rotor angle Θ:

dL

d (nppΘ)
=

d

d (nppΘ)


0 0 0 L1(m+1)

0 0 0 L2(m+1)

0 0 0 L3(m+1)

L1(m+1) L2(m+1) L3(m+1) 0

 (61)
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1.17. Review on Magnetic Flux Density and Magnetic Potential

The inductance reveals the circuit’s ability to link magnetic flux. The magnetic flux is
not an electric circuit variable, but a field variable, which is calculated as an surface
integral over magnetic flux density ~B over the area that the coil encloses.

The distribution of the vector field ~B(x, y, z) can be obtained as ∇× A by solving
a partial differential equation (PDE) for magnetic potential A.8 A numerical solution
of such a PDE is often resorted to a finite element analysis software.

1.18. Review on Lumped Parameter Model

As per Wikipedia, “the lumped-parameter model simplifies the description of the be-
haviour of spatially distributed physical systems, such as electrical circuits, into a
topology consisting of discrete entities that approximate the behaviour of the dis-
tributed system under certain assumptions.”

From a perspective of math, the lumped parameter model simplifies the partial dif-
ferential equation (PDE) problem as an ordinary differential equation (ODE) problem

for electric circuits. In other words, we do not solve for a vector field ~E(x, y, z) but
use the Ohm’s law to get current I = U/R.

The distribution of the magnetic field potential in the machine can be obtained by
solving a PDE with certain boundary conditions, whereas for ideal machine, a lumped
parameter model can be used to describe the magnetic field distribution, and based
on this model, a magnetic circuit similar to electrical circuit can be drawn.

1.19. Review on Magnetic Circuit

In Section 1.5, we have naturally introduce the concept of magnetic energy by inte-
grating electrical power e1i1 over time, which implies that the energy consumed by
inductance is converted into the magnetic field energy. Apparently, the magnetic field
is distributed in the space. The lumped parameter modeling of the magnetic field leads
to magnetic circuit.9 In magnetic circuit, the current flows through inductance pro-
vides the source of voltage potential difference, known as magnetomotive force F , the
magnetic flux Φ serves as the role of current, and the magnetic induction B is ana-
logue to current density. Iron core is often treated as the copper wire, and air gap is
analogue to the resistance having a limited magnetic conductance Λ. The Ohm’s law
for magnetic circuit therefore follows as Φ = FΛ. It is worth mentioning that there are
no dynamics for magnetic circuit. Refer to [9] for more information about magnetic
circuit.

8The PDE for magnetic potential A(x, y, z) is derived using its definition ~B = ~∇×A:

~∇× ~H = ~∇×
(
µ−1 ~B

)
= ~∇×

(
µ−1 ~∇×A

)
= ~J

which, if we adopt the Coulomb gauge ∇ ·A = 0 and assume linear isotropic material, reduces to:

−µ−1∇2A = ~J

where ~∇ =
(
∂
∂x
, ∂
∂y
, ∂
∂z

)
is the nabla operator, and ∇2 = ~∇ · ~∇ = ∆ =

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂y2

)
is the Laplace

operator. See also FEMM4.2 manual, available at: https://femm.info
9On the other hand, the lumped parameter modeling of the electrical field leads to electrical circuit.
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1.20. Review on Inductance Modeling in Magnetic Circuit

Recall the flux linkage expression for an electrical circuit [(27) and (28)], where we
have derived that inductance as the partial derivative of flux linkage with respect to
current.

In a magnetic circuit, we know the flux linkage is due to the magnetic flux (possibly
produced by multiple sources) passing through the coils and current is the source of
magnetomotive force F1 = N1i1, F2 = N2i2, so the flux linkage can be calculated as

ψ1 (i1, i2) = N1(Φ11 + Φ12) = N1 (F1Λ11 + F2Λ12) = N1 (N1i1Λ11 +N2i2Λ12) (62)

where the Ohm’s law for magnetic circuit has been applied. Since the inductance is
the partial derivative with respect to source current, we have

L1 = L11 =
∂ψ1

∂i1
= N2

1 Λ11

L12 =
∂ψ1

∂i2
= N1N2Λ12

(63)

Finally, the magnetic conductance Λg of an air gap is

Λg = µ0S/ge (64)

with µ0 the magnetic permeability, ge the air gap length, and S the area that flux
lines pass through. It is at our disposal whether to design Λ11 = Λ12 = Λg or not.

The above result forms a simple and generic magnetic circuit consisting of source,
conductance and flux. In this case, the magnetomotive force is modeled as a time
variable: F(t) as current i(t) depends on t.

1.21. Inductance Modeling in Electric Machine

However, when comes to modeling of the mutual inductance in a machine, the equation
(63) cannot be directly used10, because the coil (on the rotor) is potentially moving
along the air gap. We are lacking a general analytic tool for describing the geometry
of arbitrarily placed coils and their relative positions. We are going to introduce the
concept of turn function and winding function before we can model inductance in
electric machine [1] (see also the Appendix of my thesis [10]). In an actual machine, it
turns out that the magnetomotive force F(t, Θ) = N(Θ)i(t) is a space variable along
the air gap, as the “number of turns” N(Θ) is modeled as a Θ-dependent variable,
known as winding function. On the other hand, the magnetic conductance Λ can be
either dependent on rotor angle Θ or not, depending on the machine types. In this
course, we are interested in machine types that prefer Λ being a constant11.

10One example for calculating the mutual inductance when coil #1 and coil #(m+ 1) are aligned is:

Φ1(m+1) = Fm+1Λ = Nm+1im+1Λ

⇒ L1(m+1) = N1
Nm+1im+1Λ

im+1
= N1Nm+1Λ

(65)

11TODO: add a section of essentials of flux modulation theory to show that one principle for designing motor

is to see if the back emf exists.
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Fig. 8 shows an ideal rotary machine, for which we are going to calculate the in-
ductances among the coils. Stator inner radius is rsi and rotor outer radius is ror.

Figure 8. Cross section view of an ideal rotary machine with three place winding placed in the air gap.
An enclosed path in passing through the air gap back and forth, on which the Ampère’s circuital law will be

applied. The angular location of path 3–4 with respect to the fixed path 1–2 is denoted by α.

1.21.1. Local Calculation of Flux

Our objective is to calculate the inductance using the large signal definition L = ψ/i
so we need to first calculate the flux linkage ψ and flux Φ. The Ohm’s law for magnetic
circuit is valid for an infinitesimal angular span dα in the air gap, and for example,
the winding A is producing a magnetic flux in the air gap passing through an area
with a height of le and arc length of rdφ that is located at α:

dΦ = FAdΛ = FA (α)µ0
lerdα

ge
(66)

where ge is the air gap length, radius r ∈ [ror, rsi], and dΛ is the magnetic conduc-
tance of the infinitesimal area. From (66), to calculate flux, we need to model the
magnetomotive force as a function of space variable α.

1.21.2. Turn Function

Consider a path passing through the air gap and back, denoted as 1–2–3–4–1 in Fig. 8.
The side 1–2 is fixed and serves as a reference for the angular span between side 3–4
with respect to side 1–2, which is denoted as α. It must be emphasized that α
is in electrical radians throughout this course and it takes values from 0
degrees to npp360 degrees per rotor revolution.

An expression of magnetomotive force F(α) at angular location α (i.e., at side 3–4)
can be derived using the Ampère’s circuital law:

˛
∂S
H (α) dl =

¨
S
JdS (67)

where the boundary ∂S of the surface is 1–2–3–4–1 and H = B/µ0 is the magnetic
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field intensity. Assuming the conductors are carrying the same current of i, we define
the turn function n(α) as follows:

¨
S
JdS , n(α)i = F12 + F23 + F34 + F41 = H(0)ge + 0−H(α)ge + 0 (68)

Note path 2–3 and path 4–1 are in the iron, and we assume the magnetic potential
drop in iron is zero, so F23 = F41 = 0. The turn function counts every time when
side 3–4 moves across a conductor carrying positive current and is, according to the
Ampère’s circuital law, the net current enclosed by path 1–2–3–4–1.

We have assumed the magnetic field intensity H is only a variable of α so we have
F12 = H(0)ge that is unknown and F34 = −H(α)ge that is what we want for flux
calculation as FA(α) in (66).

According to the Gauss’s law for magnetism, we can derive a constraint for H(α)
as

‹
S′
BdS ′ =µ0

ˆ le

0

ˆ 2π

0
rH (α) dαdz = 0 (69)

⇒
ˆ 2π

0
H (α) dα = 0 (70)

⇒
ˆ 2π

0
F34 (α) dα = 0 (71)

where S ′ is a cylinder wall in the air gap covering the rotor with height of le. This
result can be utilized for calculation of the constant H(0). To see this, integrating both
sides of (68) gives

ˆ 2π

0
F12dα+

ˆ 2π

0
F34dα =

ˆ 2π

0
n (α) idα (72)

⇒ F12 = H(0)ge = i

[
1

2π

ˆ 2π

0
n (α) dα

]
(73)

which shows that F12 is the average value of the turn function n(α).

1.21.3. Winding Function

Substituting (73) into (68), it arrives at a definition for winding function:

−H(α)ge = F34 = n(α)i−
[

1

2π

ˆ 2π

0
n (α) dα

]
i , N (α) i (74)

Winding function N(α) , n(α)−
[

1
2π

´ 2π
0 n (α) dα

]
is calculated as the difference be-

tween the turn function and its average, and its physical meaning is the magnetomotive
force in the air gap generated by unit current.

Using winding function in replace of number of turns, we have a consistent expres-
sion for the magnetomotive force as F (t, α) = N (α) i (t), but keep in mind that the
concept of winding function is based on the derivation of the magnetomotive force at
location α.



EE275 Spring’23 26 Chen, Jiahao

Figure 9. Bread loaf shaped magnets mounted on the surface of a piece of back iron ring.

In case of moving coils, we need to keep side 1–2 to be relatively stationary to the
coils. The winding function is a property of the coils, and if the coils are moving along
the air gap, the reference for the winding function, i.e., side 1–2 (at which α = 0),
should also move, leading to a rotor angle dependent winding function:

F (t, α− nppΘ) = N (α− nppΘ) i (t) (75)

TODO: Examples of winding function.
TODO: Harmonic leakage inductance. Each electromotive force corresponds to some

inductance. The fundamental flux is inducing a counter electromotive force. How about
the harmonic flux? It turns out the harmonic flux caused by the fundamental current is
inducing counter electromotive force of the same frequency as the fundamental current.
In fact, the harmonic magnetomotive force must induce fundamental back electromo-
tive force in an inductor, because the inductor is assumed as a linear system compo-
nent. Harmonic leakage inductance can use the main magnetic circuit [1, Sec. 1.12].

1.22. Rotating Magnetic Field of Magnets

Consider a rotating iron core cylinder rotor with npp pole pairs of permanent magnets
mounted on its cylinder surface, and the magnets have the shape of a bread loaf, as
shown in Fig. 9.12 As a result, the magnetomotive force of the magnets can be assumed
to be sinusoidally distributed along a uniform air gap as:

Fm+1 (α,Θ) = Nm+1 (α,Θ) im+1 = NPMim+1 cos (α− nppΘ) (76)

Note the air gap location α is referred to rotor’s electrical angle. For example, only
when α is in advance to nppΘ by 90 elec.deg, the magnetomotive force Fm+1 ∝ cos(π2 )
becomes zero.

1.23. Mutual Inductance Calculation

The second use case of the concept of winding function is to calculate the mutual
inductance in a machine. Recall the local calculation of flux (66), and the flux linkage

12Figure is adapted from an European patent entitled “Multipolar rotor with loaf-shaped permanent magnets”

by Jens Schulze, which has been withdrawn.
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of winding B due to excitation of winding A is

ψBA =

ˆ 2π

0
nB (α) dΦ =

µ0ler

ge

ˆ 2π

0
FA (α)nB (α) dα =

µ0ler

ge

ˆ 2π

0
FA (α)NB (α) dα

(77)

where note the relation nB (α) = NB (α) +
[

1
2π

´ 2π
0 nB (α) dα

]
has been substituted.

Note FA = NAiA and the mutual inductance follows as

LBA =
ψBA
iA

=
µ0ler

ge

ˆ 2π

0
NA (α)NB (α) dα (78)

which implies that the mutual inductance of a linear magnetic system is not dependent
on the excitation.

Let winding A be coil #(m+1), i.e., the magnet, let winding B be coil #1, #2, #3,
and we have

L1(m+1)Λ
−1 = N(1)NPM

´ 2π
0 cos (α) cos (α− nppΘ) dα

L2(m+1)Λ
−1 = N(1)NPM

´ 2π
0 cos

(
α− 2

3π
)

cos (α− nppΘ) dα

L3(m+1)Λ
−1 = N(1)NPM

´ 2π
0 cos

(
α− 4

3π
)

cos (α− nppΘ) dα

⇒


L1(m+1)Λ

−1 = N(1)NPM

´ 2π
0

cos(nppΘ)+cos(2α−nppΘ)
2 dα = N(1)NPM

2π cos(nppΘ)
2

L2(m+1)Λ
−1 = N(1)NPM

´ 2π
0

cos
(
nppΘ−2

3π
)

+cos
(

2α−2
3π−nppΘ

)
2 dα = N(1)NPM

2π cos
(
nppΘ−2

3π
)

2

L3(m+1)Λ
−1 = N(1)NPM

´ 2π
0

cos
(
nppΘ−4

3π
)

+cos
(

2α−4
3π−nppΘ

)
2 dα = N(1)NPM

2π cos
(
nppΘ−4

3π
)

2

⇒


ψ1(m+1) = L1(m+1)im+1 = ψPM cos (nppΘ)

ψ2(m+1) = L2(m+1)im+1 = ψPM cos
(
nppΘ − 2

3π
)

ψ3(m+1) = L3(m+1)im+1 = ψPM cos
(
nppΘ − 4

3π
)

(79)
where note ψPM = ΛN(1)NPMπim+1 has been substituted, but this expression is not
very useful, as NPM stays unknown. Alternatively, we should deem the amplitude of
the permanent magnet flux linkage ψPM , im+1 × max

Θ
Lj(m+1) as the peak of the

mutual inductance times the field winding current.
In terms of calculation of reaction torque, the mutual flux linkage ψj(m+1), j = 1, 2, 3

is useful, and we can already calculate the torque for a three phase PM motor.

1.24. Machines that Utilize Only Reaction Torque (Part 1)

We shall now look at two important examples of electric machines. In a rotary ma-
chine, we call the spinning cylinder the rotor, and the stationary part the stator. We
may classify the machines based on their utilization of the torque: reaction torque,
reluctance torque, or both.

1.24.1. Surface Mounted Permanent Magnet Synchronous Machine

The physical coils of circuit #1, circuit #2 and circuit #3 are equally spaced around
the circumference of the cylinder rotor. In such machine configuration, the magnetic
conductance Λg is invariant with respect to rotor angle Θ, and therefore self inductance
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Lj and mutual inductance Ljk are independent on rotor angle Θ (i.e., their partial
derivatives are zero).

From (79), the PM flux linking the coils of circuit #1, circuit #2 and circuit #3
are ψPM cos(nppΘ), ψPM cos

[
npp

(
Θ − 2π

3

)]
and ψPM cos

[
npp

(
Θ − 4π

3

)]
, respectively,

where we have assumed that when Θ = 0, the magnet is aligned with the center of
the coil of circuit #1.

The torque expression of this symmetrical m = 3 phase machine can be derived as
follows:

Tem = 0 +

m=3∑
j=1

∂Lj(m+1)

∂Θ
ijim+1 + 0

= ψPM

(
∂ cos (nppΘ)

∂Θ
i1 +

∂ cos
[
npp

(
Θ − 2π

3

)]
∂Θ

i2 +
∂ cos

[
npp

(
Θ − 4π

3

)]
∂Θ

i3

)

= nppψPM

(
− sin (nppΘ) i1 − sin

(
nppΘ − npp

2π

3

)
i2 − sin

(
nppΘ − npp

4π

3

)
i3

)
(A17)

= −nppψPMIq
3

2
sin (−φ0) =

3

2
nppψPMIq sinφ0

(80)
in which the following symmetrical alternating current excitations with a synchronous
angular speed of ωsyn have been imposed for obtaining a steady torque:

ωsyn = npp
dΘ

dt
= nppΩ [elec.rad/s] (81)

i1 = Iq cos (ωsynt+ φ0) = Iq cos (nppΘ + φ0)

i2 = Iq cos

(
ωsynt−

2π

3
+ φ0

)
= Iq cos

(
nppΘ − npp

2π

3
+ φ0

)
i3 = Iq cos

(
ωsynt−

4π

3
+ φ0

)
= Iq cos

(
nppΘ − npp

4π

3
+ φ0

)
(82)

with Iq denoting the amplitude of the armature current, and φ the initial phase angle
of the alternating current. When φ0 = 0.5π, the torque is maximized.

Equation (81) states that the electrical angular speed of current equals the electrical
rotor angular speed, which is called as the synchronization condition. A synchronous
machine needs to excite proper currents to meet this condition to produce a steady
torque, hence the name. According to (80), a simple linear control system can be
implemented using Iq as the input to the mechanical system.

Remark: There is a unwanted magnetic field in the air gap generated by the three
phase current excitation (82), known as armature reaction magnetic field. When there
is a magnetic field, there is magnetic field energyWΦ. This implies the fact that reactive
power is drawn by a synchronous motor under load, thus its power factor is less than
1. We will come back to this topic later.

1.24.2. Permanent Magnet Induction Gear: A Concept

If we allow the coils on the stator to be freely movable along the air gap and short
the coils such that u1 = u2 = u3 = 0, then the rotating PM rotor will induce currents
in the stator coils with proper phase angle to generate maximal torque that tries to
stop the PM rotor from spinning. The reaction torque from PM to the stator coils will
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“drag” them until the coils keep up with the rotating PM rotor.
One can show that the induced current in the stator coils has an angular frequency

of ωsl = npp(Ω − Ωstator). A machine with two rotors is mostly used for a bearing
or gearbox. In our case, this machine is a PM gearbox based on the phenomenon of
induction.

1.25. Rotating Magnetic Field of a Polyphase Winding

We have learned that current is the source of magnetic field, and now we are going to
derive a pattern of current that can be useful to generate a steady torque in induction
machine.

Based on the development in (B9), we know that a (stationary) polyphase winding
is able to produce a rotating magnetomotive force as follows:

F(k,v) (α, t) =
m

2
N(v)I(k) sin

(
kωsynt+ φ(k) − vα

)
(83)

This is the first use case of the concept of winding function.
For a typical three phase winding, sinusoidal current is injected (k = 1) and there-

fore only the fundamental component of winding function (v = 1) serves as a “work-
ing” magnetomotive force in induction machine. It is worth additional explanation here
about the word “working”. In a synchronous machine, it is desired that a winding does
not generate any magnetomotive force in the air gap, and in this case, the magneto-
motive force is unwanted and therefore it is not considered a working magnetomotive
force. However, in an induction machine, the main air gap field is produced by a three
phase winding, and this field is interacting with the rotor currents to produce steady
torque, and therefore, it is considered as a working magnetomotive force.

1.26. Machines that Utilize Only Reaction Torque (Part 2)

The induction machine is also known as asynchronous machine. For a synchronous
machine, if we replace the PM field winding with a three-phase field winding, we are
able to apply current at an asynchronous frequency (denoted as ωsl) to that of the
armature winding (denoted as ωsyn), hence the name.

1.26.1. Asynchronous Machine: a Concept

Let’s now recap two important facts that we have developed so far.

(1) Recall the idea of using virtual field winding that carries a constant field current
im+1, it implies that in terms of magnetic interaction with stator, permanent
magnets can be replaced with other circuit(s) on the rotor. The magnetic field
of the bread-loaf shaped magnets is sinusoidally distributed in electrical rotor
angular angle θ.

(2) From the i–N–F (i.e., current–winding function–magnetomotive force) develop-
ment, we know that stationary coils with alternating current can generate a ro-
tating magnetic field that rotates at an electrical angular speed of d

dtθ = ∓k
vωsyn

with current harmonic index k and winding function harmonic index v.

We therefore can infer that, in terms of magnetic interaction with stator winding, a
poly-phase winding with symmetrical alternating current is equivalent to a rotating
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field winding that carries constant current and we can use a poly-phase winding in
replace of the rotor magnets. This seemingly obvious fact is indeed closely related to
an important development for ac motor control, widely known as Park transformation.
To see this, let’s write down the magnetomotive force of a rotating poly-phase winding
as follows

F(1,1) (α, t) =
m

2
N(1)I(1) sin

(
φ(1) − [α− nppΘ (t)] + ωslt

)
(84)

where the angular frequency of the alternating current is ωsl, note Ω = d
dtΘ, and

note that the angular location along the air gap is referred to the rotor angle of the
cylinder, denoted as α− nppΘ. In order for (84) to replace of (76), we need to impose
a constraint on the rotor current frequency ωsl. When the current frequency is 0 Hz,
i.e., ωsl = 0 rad/s, the rotor should spin at a synchronous speed of Ω = ωsyn

npp
, which is

the case of the virtual field winding replacing the magnets; when the current frequency
is 1 Hz, the rotor should spin at an asynchronous speed of Ω = ωsyn−2π×1 Hz

npp
; and we

call this 1 Hz the slip frequency, and the corresponding slip angular speed is denoted
by ωsl = 2π × 1 rad/s. In other words, if we use multiple electric circuits on the
rotor in replace of the magnets, we can relax the synchronization condition (81) by
a slip angular speed of ωsl. Here “slip” means the rotor is not synchronized with the
frequency of the alternating current, hence such a machine is called as asynchronous
machine.

The torque expression for an asynchronous machine is similar to that of a syn-
chronous machine (80), since they both utilize the reaction torque. To avoid unneces-
sary derivation of the torque expression, let’s rewrite the magnetomotive force in (84)
following the form in (76) which is rewritten here for comparison:

Fm+1 (α,Θ) = Nm+1 (α,Θ) im+1 = NPMim+1 cos (α− nppΘ)

s.t.
d

dt
nppΘ = ωsyn

To replicate a field like this using a three-phase winding, let φ(1) = 0.5π, we have

F(1,1) (α− nppΘ, t) =
m

2
N(1)I(1) cos (α− nppΘ(t)− ωslt) (85)

which states that the m = 3 phase current of amplitude I(1) is equivalent to a constant

current of m
2 I(1) that is rotating at a speed of d

dt [nppΘ(t) + ωslt] = nppΩ + ωsl.
In order to satisfy the synchronization condition, we need to impose:

nppΩ + ωsl = ωsyn (86)

which implies that the rotor speed of an asynchronous machine can be different from
the synchronous angular speed ωsyn/npp, hence it is called asynchronous machine.

Replace the three-phase field winding circuit with a (m + 1)-th circuit, and let
im+1 = m

2 I(1), and the torque of an asynchronous machine can be derived as [see (80)
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for detailed derivation]

Tem = 0 +

m∑
j=1

∂Lj(m+1)

∂Θ
ijim+1 + 0

=
m

2
IqnppψA sinφ0

(87)

where ψA is amplitude of the active flux. We will introduce the concept of active flux
later, and for now, it is safe to think it as the rotor flux linkage, i.e., the equivalent
permanent magnetic flux linkage in an asynchronous machine.

1.26.2. Induction Machine

The conceptual asynchronous machine uses a rotating three-phase field winding on the
rotor, and the armature winding is fixed to stator. Unlike synchronous machine or the
conceptual asynchronous machine, the induction machine uses stationary three-phase
field winding, and a rotating armature winding. Since only the relative movement
between the stator and rotor matters, if we swap the stator and rotor for a conceptual
asynchronous machine, we have an induction machine.

However, it is still difficult to excite alternating current into the rotating circuits,
so it is preferred to utilize magnetic induction to excite the rotor circuits. This means
we need to use the stator winding, for the first time so far in this course, to generate
the main magnetic field in the air gap as follows

F(1,1) (α, t) =
m

2
N(1)I(1) cos (α− ωsynt) (88)

which means the stator three-phase field winding can be replaced with an (m+ 1)-th
circuit.

Assume there is a polyphase winding on the rotor, and its Qr-phase winding function
is 

Nr1 (α− nppΘ) = Nr(1) cos (α− nppΘ)

Nr2 (α− nppΘ) = Nr(1) cos
(
α− nppΘ − 2π

Qr

)
Nr3 (α− nppΘ) = Nr(1) cos

(
α− nppΘ − 4π

Qr

)
. . .

NrQr (α− nppΘ) = Nr(1) cos
(
α− nppΘ − (Qr−1)2π

Qr

)
(89)

Then, mutual flux linkage for the rotor circuits due to stator magnetic field can be
derived as follows [cf. (79)]

ψ1(m+1) = ψA cos (ωsynt− nppΘ)

ψ2(m+1) = ψA cos
(
ωsynt− nppΘ − 2π

Qr

)
ψ3(m+1) = ψA cos

(
ωsynt− nppΘ − 4π

Qr

)
. . .

ψQr(m+1) = ψA cos
(
ωsynt− nppΘ − (Qr−1)2π

Qr

)
(90)
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According to Faraday’s law of induction, the induced back electromotive forces on the
rotor circuits are

e1(m+1) = ωsynψA cos
(
(ωsyn − nppΩ) t+ 1

2π
)

e2(m+1) = ωsynψA cos
(

(ωsyn − nppΩ) t− 2π
Qr

+ 1
2π
)

e3(m+1) = ωsynψA cos
(

(ωsyn − nppΩ) t− 4π
Qr

+ 1
2π
)

. . .

eQr(m+1) = ωsynψA cos
(

(ωsyn − nppΩ) t− (Qr−1)2π
Qr

+ 1
2π
)

(91)

Comparing (91) with the current excitations in (82), we learn that if we short all
the circuits on the rotor, the electromotive forces in (91) are going to generate rotor
currents at slip angular speed ωsl that has the proper phase for maximizing the torque.

Note we did not assume Qr = 3, and therefore, the rotor winding can be made of
a symmetric winding that has higher phase number than stator winding. Since the
rotor circuits are shorted, it is also feasible that we short all circuits using two end
rings, making the rotor winding a squirrel cage, in which case the phase number m
equals to the number of conductors. This conclusion implies that the maximum of the
phase number of a group of circuits depends on the number of conductors that having
different phases.

A squirrel cage rotor is a special case of the above rotor with theQr-phase symmetric
winding, in which each phase of the winding is reduced to only one solid conductor.

1.27. Electrical Dynamics in Phase Quantities

TODO: remove npp in integral limit:
To derive the electrical dynamics in phase quantities, we need to compute the rest

of the inductances. The mutual inductance is

L12 =
ψ12

i2
=
µ0ler

ge

ˆ 2π

0
N1 (α)N2 (α) dα

=
µ0ler

ge
N2

(1)

ˆ 2π

0
cos (α) cos

(
α− 2

3π
)

dα

=
µ0ler

ge
N2

(1)

ˆ 2π

0

cos
(
α− α+ 2

3π
)

+ cos
(
α+ α− 2

3π
)

2
dα

=
µ0ler

ge
N2

(1)

ˆ 2π

0

cos
(

2
3π
)

+ cos
(
2α− 2

3π
)

2
dα

=
µ0ler

ge
N2

(1)

cos
(

2
3π
)

2π

2

=
µ0ler

ge
N2

(1)

−π
2

(92)

It is easy to show that L12 = L13 and L1 = L11 = µ0ler
ge

N2
(1)π.
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The electrical dynamics in phase quantities are (note i ∈ R4 and L ∈ R4×4)

u = Ri+L
d

dt
i+ eΩ

eΩ =
dL

d (nppΘ)

d (nppΘ)

dt
i

(93)

Let’s only consider the case of a 3 phase permanent magnet motor and neglect the
dynamics of the m+ 1 circuit, so we have u1

u2

u3

 = R

1 0 0
0 1 0
0 0 1

 i1
i2
i3

+

 L1 −1
2L1 −1

2L1

−1
2L1 L1 −1

2L1

−1
2L1 −1

2L1 L1

 d

dt

 i1
i2
i3

+

 eΩ1

eΩ2

eΩ3

 (94)

One basic idea to generate reaction torque using (95) is to excite current ij(t) that is
in-phase to the rotary electromotive force eΩj . To see this, apply a dot product with
current vector to (94), the left-hand-side is electrical power input, the right-hand-side
reads heating power, time derivative of stored magnetic energy in inductance, and
electromagnetic power.

Further assume the stator winding is wye-connected such that neutral current is
null: i1 + i2 + i3 = 0, and therefore the mutual inductances can be eliminated to arrive
at: u1

u2

u3

 = R

 i1
i2
i3

+ 3
2L1

d

dt

 i1
i2
i3

+
d (nppΘ)

dt

 d

d (nppΘ)

 L1(m+1)

L2(m+1)

L3(m+1)

 im+1 (95)

1.27.1. Brushless DC Machine

A brushless dc machine can be controlled using the phase quantity model (95). The
brushless dc machine only needs to know the rotor angle when the rotary electromotive
force eΩj is positive for phase j. For a three phase implementation, this means one
only needs three Hall sensors to measuring when one of the north-poles of the PM
rotor is aligned with each phase of coils. Therefore, brushless dc motor is widely used
in electric bicycles for its low cost in rotor angle sensor.

1.28. Correction for Inductance Calculation of Multiple Pole Pairs

When we are integrating over α for calculating inductance, the full integral limit for
α should really be [0, npp2π], because α is in electrical radians. However, we have
always been doing the integral from 0 to 2π, see e.g., (92). This is because there are
distinct choices about how we want to connect the coils belonging to the same phase
but under different PM pole pairs. If we decide to (for the same phase) connect coils
under different PM pole pairs in series, the final inductance should be npp as large,
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such that (92) should become:

L12 =
ψ12

i2
=
µ0ler

ge

ˆ 2πnpp

0
N1 (α)N2 (α) dα

=
µ0ler

ge
N2

(1)

ˆ 2πnpp

0
cos (α) cos

(
α− 2

3π
)

dα

=
µ0ler

ge
N2

(1)

−πnpp

2

(96)

If we decide to connect coils under different PM pole pairs in parallel, the final induc-
tance should become much smaller.

For this course, the theoretical value of inductance does not matter that much, and
we can always correct the calculated result of inductance by updating the value of
winding function amplitude N(1). Therefore, it is safe for us to take integral in [0, 2π]
instead of [0, npp2π].

1.29. A Hindsight for Fast Deriving Torque Expression

Since we know the stored magnetic energy in inductance is

WΦ =
1

2
iTLi

we can easily derive the change rate of WΦ as

PΦ = iTL
d

dt
i+

1

2
iT
∂L

∂Θ

∂Θ

∂t
i (97)

Take m = 1 for example, we can write the electrical dynamics as follows

u1 −R1i1 = e1 =
dψ1

dt
=

∂ψ1

∂i1
di1 + ∂ψ1

∂i2
di2 + ∂ψ1

∂Θ dΘ

dt
= L11

di1
dt

+ L12
di2
dt

+
∂ (L11i1 + L12i2)

∂Θ

dΘ

dt

u2 −R2i2 = e2 =
dψ2

dt
=

∂ψ2

∂i1
di1 + ∂ψ2

∂i2
di2 + ∂ψ2

∂Θ dΘ

dt
= L21

di1
dt

+ L22
di2
dt

+
∂ (L21i1 + L22i2)

∂Θ

dΘ

dt
(98)

Left multiplying
[
i1 i2

]
yields the power balance equation:

[
i1 i2

] [ u1

u2

]
−
[
i1 i2

]
R

[
i1
i2

]
=
[
i1 i2

] [ e1

e2

]
=

([
i1 i2

] [L11 L12

L21 L2

] [
d
dt i1
d
dt i2

]
+

1

2

[
i1 i2

] [ ∂
∂ΘL11

∂
∂ΘL12

∂
∂ΘL21

∂
∂ΘL2

]
dΘ

dt

[
i1
i2

])
+

1

2

[
i1 i2

] [ ∂
∂ΘL11

∂
∂ΘL12

∂
∂ΘL21

∂
∂ΘL2

]
dΘ

dt

[
i1
i2

]
(99)

On the other hand, we know the power balance equation should be

Pelec,in − PCu = PΦ + Pem
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which can be rewritten as

iTu− iTRi = iTe =

(
iTL

d

dt
i+

1

2
iT
∂L

∂Θ

∂Θ

∂t
i

)
+ΩTem (100)

Compare (99) and (100), we know the electromagnetic torque should be:

Tem =
1

2

[
i1 i2

] [ ∂
∂ΘL11

∂
∂ΘL12

∂
∂ΘL21

∂
∂ΘL2

] [
i1
i2

]
=

1

2
iT
∂L

∂Θ
i

with i ∈ Rm+1 and L ∈ R(m+1)×(m+1)
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2. Chapter 2: AC Machine Theory

The mathematic model in phase quantities derived in last chapter are theoretically
enough for describing the dynamics of electric machines, but are unnecessarily compli-
cated for engineering. In this chapter, we are going to further model electric machines
for engineering purposes.

2.1. Motivation

The rotating magnetomotive force in (88) created by a stationary polyphase winding:

F(1,1) (α, t) =
m

2
N(1)I(1) cos (α− ωsynt)

can be viewed as a result of a virtual coil that has number of turns of N(1) and carries
a dc current of m

2 I(1), and the virtual coil is rotating along the air gap at an electrical

angular speed of dα
dt = ωsyn. In other words, the mechanical speed of the equivalent

virtual coil is n−1
ppωsyn.

Note the same rotating magnetic field can be generated when m is taking different
values, which implies that we are able to model the electric machine with less than m
state variables, e.g., down to 1. However, on the other hand, a m = 3 phase winding
can do more than just creating one rotating magnetic field for magnetizing the air gap,
and in fact, in an induction machine, the stator three-phase field winding is also able
to also generate a magnetic field to cancel out the armature reaction field created by
the rotor circuits. To see this, recall the desired three phase current for steady torque
from last chapter (82):

i1 = I(1) cos (ωsynt+ φ0) = I(1) [cos (ωsynt) cosφ0 − sin (ωsynt) sinφ0]

i2 = I(1) cos
(
ωsynt− 2π

3 + φ0

)
= I(1)

[
cos
(
ωsynt− 2π

3

)
cosφ0 − sin

(
ωsynt− 2π

3

)
sinφ0

]
i3 = I(1) cos

(
ωsynt− 4π

3 + φ0

)
= I(1)

[
cos
(
ωsynt− 4π

3

)
cosφ0 − sin

(
ωsynt− 4π

3

)
sinφ0

]
(101)

in which we have decomposed the sinusoidal current into two synchronous parts with
1
2π phase difference, one is responsible for magnetizing the air gap and one is for
canceling armature reaction field.

2.2. The DQ Plane

To reveal both the redundancy and capability of a polyphase winding, we need to
learn about the degree of freedoms of a symmetric electric system first. Consider a
three phase current with phase angle φ(t)

i1 = I(1) cos (φ)

i2 = I(1) cos
(
φ− 2π

3

)
i3 = I(1) cos

(
φ− 4π

3

) (102)

It is a well known trigonometry identity that i1 + i2 + i3 = 0. This is also a constraint
when the three phase winding uses Wye connection with a neutral point.
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The vector iabc = (i1, i2, i3) = i1~a + i2~b + i3~c describes a point moving in the

Cartesian coordinate system with its standard basis denoted by {~a,~b,~c}, and a direct
corollary is that the point stays within the plane defined by equation i1 + i2 + i3 = 0.
We shall now look for an alternative basis related to this plane, i.e., three unit vectors
that are perpendicular to each other, and two of the three are within the plane. We
can call it the DQ plane.

2.3. Park Transformation

First, let’s find a normal vector to the plane. Apparently, (1, 1, 1) = ~a + ~b + ~c is a
normal vector of the plane because it is orthogonal to every vector in the plane (i.e.,
the dot product is null):(

~a+~b+ ~c
)
·
(
i1~a+ i2~b+ i3~c

)
= (1, 1, 1) · (i1, i2, i3) = 0

and the resulting unit normal vector is

~n =
~a+~b+ ~c√
12 + 12 + 12

=
~a+~b+ ~c√

3
=

(
1√
3
,

1√
3
,

1√
3

)
(103)

The analytic geometry meaning of this coefficient
√

3
−1

is known as direction cosine.
That is, the direction cosine of the vector ~a to the normal vector is

(1, 0, 0) · (1, 1, 1)

|(1, 0, 0)| · |(1, 1, 1)|
=

1√
3

= cos
〈
~a,~a+~b+ ~c

〉
≈ cos (54.7◦) ≈ 0.577 (104)

In addition, it can be shown that the plane i1 + i2 + i3 = 0 passes through the origin,
because the projection of the vector (0, 0, 0) to the normal vector of the plane has a
length of zero.

Second, it can be shown that the distance from the point to the origin is a constant

|iabc| =
√
i21 + i22 + i23 = I(1)

√
cos2 (φ) + cos2

(
φ− 2

3π
)

+ cos2
(
φ− 4

3π
)

= I(1)

√
3
2

(105)
meaning the point iabc is in a circular trajectory about the origin, and therefore, we
can define a unit radial vector as

~r =
iabc
|iabc|

=
i1~a+ i2~b+ i3~c√
i21 + i22 + i23

, ~d =

I(1) cos (φ)

I(1)

√
3
2

,
I(1) cos

(
φ− 2

3π
)

I(1)

√
3
2

,
I(1) cos

(
φ− 4

3π
)

I(1)

√
3
2


(106)

note in this course we define the axis that is through origin and is parallel to the radial
vector as the direct-axis or d-axis.

The third vector, the quadrature vector ~q, that forms a new basis must satisfy the
following cross product:

~q = ~n× ~d (107)
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It turns out that the speed of the point d
dtiabc is a proper candidate:

~q =
d
dtiabc∣∣ d
dtiabc

∣∣ =
d
dt i1~a+ d

dt i2
~b+ d

dt i3~c

ωsynIq

√
3
2

=
ωsynIq

ωsynIq

√
3
2

(
− sin (φ) ,− sin

(
φ− 2

3π
)
,− sin

(
φ− 4

3π
))

(108)
A transformation matrix thus results (note a coordinate is a column vector)

 ~d T

~q T

~n T

 =

√
2

3

 cos (ωsynt) cos
(
ωsynt− 2

3π
)

cos
(
ωsynt− 4

3π
)

− sin (ωsynt) − sin
(
ωsynt− 2

3π
)
− sin

(
ωsynt− 4

3π
)√

1
3/
√

2
3

√
1
2

√
1
2

 , T (ωsynt)

(109)
which is known as power invariant Park transformation matrix.13 Left multiplying a
vector by the matrix means to project the vector to each of the basis vectors.

Substituting φ = ωsynt+ φ0, the current in phase quantities iabc can now be repre-
sented as a constant vector in the new coordinates idqn as

idqn =

 id
iq
in

 = T (ωsynt) iabc =

√
2

3

 3
2I(1) cosφ0
3
2I(1) sinφ0

0

 (110)

The Park transformation has the following properties:

T (θd)
−1 = T (θd)

T

T (θd)
dT (θd)−1

dt =

 0 − d
dtθd 0

d
dtθd 0 0

0 0 0


dT (θd)

dt T (θd)
−1 =

 0 d
dtθd 0

− d
dtθd 0 0
0 0 0


(111)

where note the angle used in Park transformation (denoted as θd) does not need to
equal to the phase angle of the currents, and T (0) is known as the Clarke transforma-
tion14 and the resulting dqn-frame is also called as the αβγ-frame:

T (0) =

√
2

3

 1 −1
2 −1

2

0
√

3
2 −

√
3

2
1√
2

1√
2

1√
2

 (112)

Applying Clarke transformation to each of the original basis vectors ~a,~b,~c results in

13R.H. Park, “Two-Reaction Theory of Synchronous Machines, Generalized Method of Analysis - Part I,”

Trans. of the AIEE, 1929, pp. 716–730.
14W. C. Duesterhoeft, Max W. Schulz, Edith Clarke. “Determination of Instantaneous Currents and Volt-

ages by Means of Alpha, Beta, and Zero Components”. July 1951. Transactions of the American Institute of
Electrical Engineers. 70 (2): 1248–1255. doi:10.1109/T-AIEE.1951.5060554.
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three new points

T (0)~a = T (0)

 1
0
0

 =


√

2
3

0
1√
3

 ,T (0)~b =

 −
√

1
6

1√
2

1√
3

 ,T (0)~c =

 −
√

1
6

− 1√
2

1√
3

 (113)

If we project the three points onto the dq-plane, it can be shown that the angles
among the three projected phase-axes are 120 degrees. If you draw the three axes on
the DQ plane, you will learn that the projected phase axes can be exactly aligned with
the actual coils placed along the air gap. If we draw DQ plane on top of the motor
geometry (i.e., the coils and the magnets), we are able to visualize space variable like
magnetomotive force F(1,1)(α, t) and time variable idqn in the same plot.

2.4. Application of Park Transformation in Inductance Calculation

The Park transformation can be applied to other electric circuit quantities, including
flux linkage and voltage. Recall the flux linkage is calculated as ψabc = Labciabc, and
we have

Tψabc = TLabc
[
T−1T

]
iabc

⇒Tψdqn = TLabcT
−1idqn

(114)

Recall the mutual inductance calculation in (78), we have

Labc =
µ0ler

ge

ˆ 2π

0

N1N1 N1N2 N1N3

N1N2 N2N2 N2N3

N1N3 N2N3 N3N3

dα

=
µ0ler

ge

ˆ 2π

0

N1 N1 N1

N2 N2 N2

N3 N3 N3

N1 0 0
0 N2 0
0 0 N3

dα

=
µ0ler

ge

ˆ 2π

0

 N1

N2

N3

 [1 1 1
] N1 0 0

0 N2 0
0 0 N3

dα

=
µ0ler

ge

ˆ 2π

0

 N1

N2

N3

 [N1 N2 N3

]
dα

(115)

which leads to the following derivation

⇒ TLabcT
−1 =

µ0ler

ge

ˆ 2π

0
T

 N1

N2

N3

 [N1 N2 N3

]
T Tdα

⇒ Ldqn , TLabcT
−1 =

µ0ler

ge

ˆ 2π

0

 Nd

Nq

Nn

 [Nd Nq Nn

]
dα

(116)
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where we have derived the dqn-frame winding function as follows Nd

Nq

Nn

 , T (θd)

 N1 (α)
N2 (α)
N3 (α)


=

√
2

3

 cos θd cos
(
θd − 2

3π
)

cos
(
θd − 4

3π
)

− sin θd − sin
(
θd − 2

3π
)
− sin

(
θd − 4

3π
)√

1
2

√
1
2

√
1
2


 N(1) cos (α)

N(1) cos
(
α− 2

3π
)

N(1) cos
(
α− 4

3π
)


=

√
3

2
N(1)

 cos (θd − α)
− sin (θd − α)

0


(117)

Note the winding function Nj(α) is a function of angular location α, while the dqn-
frame version is further dependent on d-axis angle θd.

In conclusion, in terms of magnetic behavior, a symmetrical three phase winding
with currents i1, i2, i3 and winding function N1, N2, N3 can be replaced with currents
id, iq, in with winding function Nd, Nq, Nn. The distribution of winding function Nd

and Nq over angular location α is referred to d-axis angle θd. in other words, there
are two virtual coils corresponding to Nd and Nq being fixed to the d-axis and q-axis,
respectively.

It can be shown that the mutual inductance between the d-axis coil and q-axis coil
is zero:

Ldq =
µ0ler

ge

ˆ 2π

0
NdNqdα = 0 (118)

The d-axis self-inductance and q-axis self-inductance are now in order:[
Ldd
Lqq

]
=
µ0ler

ge

ˆ 2π

0

3

2
N2

(1)

[
cos2 (θd − α)
sin2 (θd − α)

]
dα

=
µ0ler

ge

ˆ 2π

0

3

2
N2

(1)

1

2

[
1 + cos (2θd − 2α)
1− cos (2θd − 2α)

]
dα =

µ0ler

ge

3

2
N2

(1)

1

2
2π

[
1
1

]
(119)

2.5. Generalization to Multi-phase Winding

If the abc-axes are projected to the dq-plane, the angle among the three axes are 2π/3.
For a symmetrical electrical system with more than m = 3 phases, e.g., the ro-

tor circuits of an induction machine at standstill, the Park transformation can be
extended.15

The motivation stays the same, and the derivation of the steady torque in (80) can
be extended to require a multi-phase currents of ij = Iq cos

(
ωsynt− (j − 1) 2π

m

)
, j =

15Jin Huang, “Transformation theory for p-pair pole n phase symmetric system”, Transactions of China Elec-
trotechnical Society, 1995(1), pp.53-57.
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1, 2, . . . ,m, and the corresponding Park transformation to the dq-plane is

Tm =

√
2

m

 cos (θd) cos
(
θd − 2π

m

)
cos
(
θd − 4π

m

)
. . . cos

(
θd − (m−1)2π

m

)
− sin (θd) − sin

(
θd − 2π

m

)
− sin

(
θd − 4π

m

)
. . . − sin

(
θd − (m−1)2π

m

)
(120)

If we do a similar calculation as in (113) for the m-phase system, we will learn that the
adjacent phase axes in the dq-plane has a angle of 360◦/m. Recalling the conclusion
from last sub-section, the extended Park transformation in (120) implies that a multi-
phase winding can be replaced with a pair of coils in d-axis and q-axis, respectively. A
corollary is that the squirrel cage of an induction motor at standstill can be modeled
as a d-axis coil and q-axis coil.

When the rotor winding is rotating, it can be modeled through a change of reference
for its winding functions as follows:

Nr(1) cos (α− nppΘ)

Nr(1) cos
(
α− nppΘ − 1

m2π
)

Nr(1) cos
(
α− nppΘ − 2

m2π
)

...
Nr(1) cos

(
α− nppΘ − m−1

m 2π
)

 (121)

This means the winding functions are already rotating forward in the air gap at a
speed of d

dtnppΘ. Only fundamental component is considered here because we are only
interested in the magnetomotive force that contributes to attain a steady reaction
torque.

Our objective is to transform all circuits into dq-plane as virtual coils. Therefore,
applying Tm(θd − nppΘ) from (120) to the winding function vector in (121) gives the
winding function of the rotor dq virtual circuits:[

Ndr

Nqr

]
=

√
m

2
Nr(1)

[
cos (θd − nppΘ − α+ nppΘ)
− sin (θd − nppΘ − α+ nppΘ)

]
(122)

which is basically the multi-phase version of the stator dq-frame winding functions in
(117).

As an interpretation, (122) shows that there is a virtual coil placed at d-axis such
that its per ampere magnetomotive force waveform is referred to d-axis angle θd, i.e.,

Ndr =

√
m

2
Nr(1) cos (α− θd)

2.6. Modeling of Rotor Saliency

So far, we have assumed Λ is a constant and air gap length ge is invariant with respect
to angular location α. This can be true for a surface mounted permanent magnet
synchronous machine, but is off for a wound-rotor synchronous machine with actual
field winding or an interior/inset permanent magnet synchronous machine. A slip ring
is needed to supply currents to the rotor.

For an interior/inset permanent magnet synchronous machine, the magnetic circuit
passes through the magnets has low magnetic conductance. For an wound-rotor syn-
chronous machine, the field winding needs to be placed in a slot where the magnetic
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conductance is lower than the salient pole. We will now focus on the modeling of
salient pole.

There are two approaches to model a salient pole rotor: Fourier expansion and
infinitely deep slot. Either approach ends up with the modeling of the inverse air gap
length function g−1

e (α), which matters to the integral of the winding functions over α
when calculating inductance.

2.6.1. Infinitely Deep Slot Approach [1]

For small synchronous machine, the air gap length function is a simple function, and
we can model it as if the slot is infinitely deep such that the inverse of the air gap
length is 0. Let’s assume the salient pole of the rotor spans a pole arc of βπ over a
pole pitch π, where β ∈ (0, 1] denotes the per unit pole arc, and an attemptive design
of the inverse air gap length function is

g−1
e (α− nppΘ) =

{
g−1

min, (α− nppΘ) ∈ [0, βπ] ∪ [π, (1 + β)π]

0, others
(123)

The inductance calculation in (119) can be updated with the inver air gap length
function in (123), but the expression is unnecessarily complicated as shown in the
footnote here16. One can show that not only (123) leads to complicated inductance
expressions, but also that it is a counter-intuitive design. The hint is that the function
g−1
e (α− nppΘ) defines where the rotor iron core locates along the axis of the angular

location α, while the winding function Nd(θd − α) defines the virtual coil’s location
along the axis of the angular location α—they should be perfectly aligned for later
decoupling between the stator d-(q-)axis coil and rotor q-(d-)axis coil.

A better option is to align the center of the salient pole to the zero rotor position
Θ = 0, giving a slightly different inverse gap function:

g−1
e (α− nppΘ) =

{
g−1

min, (α− nppΘ) ∈
[
−βπ

2 ,
βπ
2

]
∪
[
π − βπ

2 , π + βπ
2

]
0, others

(124)

16The dq inductance calculation using the inverse air gap length function (123) goes:[
Ldd
Lqq

]
= µ0ler

ˆ 2π

0

3

2
N2

(1)

[
cos2 (θd − α)

sin2 (θd − α)

]
g−1
e dα

= µ0ler

ˆ 2π

0

3

2
N2

(1)

1

2

[
1 + cos (2θd − 2α)
1− cos (2θd − 2α)

]
g−1
e dα

=
µ0ler

gmin

3

2
N2

(1)

1

2
·
(ˆ nppΘ+βπ

nppΘ

[
1 + cos (2θd − 2α)
1− cos (2θd − 2α)

]
dα+

ˆ nppΘ+(1+β)π

nppΘ+π

[
1 + cos (2θd − 2α)
1− cos (2θd − 2α)

]
dα

)

⇒ Ldd =
µ0ler

gmin

3

2
N2

(1)

1

2
· 2
(
βπ − 1

2
sin (2θd − 2nppΘ − 2βπ) +

1

2
sin (2θd − 2nppΘ)

)
=
µ0ler

gmin

3

2
N2

(1)

(
βπ − 1

2
(sin 2 (θd − nppΘ) (cos 2βπ − 1) + cos 2 (θd − nppΘ) sin 2βπ)

)
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which leads to the following dq inductances results17

Ldd =
µ0ler

gmin

3

2
N2

(1) [βπ + cos 2 (θd − nppΘ) sin (βπ)]

Lqq =
µ0ler

gmin

3

2
N2

(1) [βπ − cos 2 (θd − nppΘ) sin (βπ)]

(125)

from which we learn that if we use a reference frame whose d-axis angle is equal to the
rotor’s electrical angular position, we obtain dq inductances that are invariant with
respect to rotor position, in which case, the assumed air gap shape g−1

e (α) results in
Ldd > Lqq given that θd = nppΘ.

The rotor dq self-inductances can be as well calculated from (122)

Ldrdr =
µ0ler

gmin

m

2
N2
r(1) [βπ + cos 2 (θd − nppΘ) sin (βπ)]

Lqrqr =
µ0ler

gmin

m

2
N2
r(1) [βπ − cos 2 (θd − nppΘ) sin (βπ)]

(126)

From (125) and (126), one realizes that circuits with different phase numbers and even
different motion states can all be transformed into dq-plane for potential simplification
of the inductance calculation results, even when the rotor saliency is present. Therefore,
it is desired to model AC machine in dq-plane.

2.6.2. Fourier Expansion Approach [2]

For larger synchronous machine, the salient pole is tapered to obtain a more better
machine performance, and in this case, the inverse air gap length function is to be
designed at will. A common practice is to design the air gap length as follows

g−1
e (α− nppΘ) =

g−1
min + g−1

max

2
+
g−1

min − g−1
max

2
cos 2 (α− nppΘ) , g0+g2 cos 2 (α− nppΘ)

(127)
where g0 and g2 are in dimension of m−1. Like (124), we have intentionally design
the phase angle to align the center of the salient pole to the zero rotor position. This
design (127) can also be interpreted as a result of neglecting higher order terms in the
Fourier expansion of some inverse air gap length function.

17The full derivation using (124) is listed here to save space:[
Ldd
Lqq

]
= µ0ler

ˆ 2π

0

3

2
N2

(1)

[
cos2 (θd − α)
sin2 (θd − α)

]
g−1
e dα

= µ0ler

ˆ 2π

0

3

2
N2

(1)

1

2

[
1 + cos (2θd − 2α)
1− cos (2θd − 2α)

]
g−1
e dα

=
µ0ler

gmin

3

2
N2

(1)

1

2
·
(ˆ nppΘ+ 1

2
βπ

nppΘ− 1
2
βπ

[
1 + cos (2θd − 2α)

1− cos (2θd − 2α)

]
dα+

ˆ nppΘ+π+ 1
2
βπ

nppΘ+π− 1
2
βπ

[
1 + cos (2θd − 2α)

1− cos (2θd − 2α)

]
dα

)

⇒ Ldd =
µ0ler

gmin

3

2
N2

(1)

1

2
· 2
(
βπ − 1

2
sin (2θd − 2nppΘ − βπ) +

1

2
sin (2θd − 2nppΘ + βπ)

)
=
µ0ler

gmin

3

2
N2

(1)

(
βπ − 1

2
sin (2θd − 2nppΘ) cos (−βπ) + 1

2
sin (2θd − 2nppΘ) cos (βπ)

− 1
2

cos (2θd − 2nppΘ) sin (−βπ) + 1
2

cos (2θd − 2nppΘ) sin (βπ)

)
=
µ0ler

gmin

3

2
N2

(1) [βπ + cos 2 (θd − nppΘ) sin (βπ)]
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Then, the dq self-inductances become18

Ldd = µ0ler
3

2
N2

(1)π

(
g0 + g2

cos 2 (θd − nppΘ)

2

)
Lqq = µ0ler

3

2
N2

(1)π

(
g0 − g2

cos 2 (θd − nppΘ)

2

) (128)

Similar results to the infinitely deep slot approach have been obtained. In addition,
for a permanent magnet machine, since the magnets have almost the same magnetic
conductivity as air, the coefficient g2 should be modelled as a negative value, resulting
in Ldd < Lqq.

In addition, the mutual inductance between d-axis coil and q-axis coil can as well
be calculated using winding functions as

Ldq = µ0ler
3

2
N2

(1)

π

2
g2 sin 2 (θd − nppΘ) (129)

2.7. Leakage Inductance Modeling

In practice, the phase inductance matrix should further incorporate leakage inductance
terms. As a notation convention for this course, the matrix Labc is defined solely
using winding functions in (115) for an ideal machine; whereas, for an actual machine,
the three phase stator phase inductance matrix is denoted by Labcs, which further
accounts for self-leakage inductance Lσ and mutual leakage inductance Mσ:

Labcs = Labc +Labcσ (130)

with the leakage inductance matrix and its dq-frame version as follows

Labcσ =

Lσ Mσ Mσ

Mσ Lσ Mσ

Mσ Mσ Lσ

 and TLabcσT
−1 =

Lσ −Mσ 0 0
0 Lσ −Mσ 0
0 0 Lσ + 2Mσ


(131)

18The full derivation using (127) is[
Ldd
Lqq

]
= µ0ler

ˆ 2π

0

3

2
N2

(1)

[
cos2 (θd − α)
sin2 (θd − α)

]
g−1
e dα

= µ0ler

ˆ 2π

0

3

2
N2

(1)

1

2

[
1 + cos (2θd − 2α)
1− cos (2θd − 2α)

]
(g0 + g2 cos 2 (α− nppΘ)) dα

⇒ Ldd = µ0ler
3

2
N2

(1)

1

2
·
ˆ 2π

0
(1 + cos (2θd − 2α)) (g0 + g2 cos 2 (α− nppΘ)) dα

= µ0ler
3

2
N2

(1)

1

2
·
ˆ 2π

0
(g0 + g2 cos 2 (α− nppΘ) + g0 cos (2θd − 2α) + g2 cos 2 (α− nppΘ) cos (2θd − 2α)) dα

= µ0ler
3

2
N2

(1)

1

2
·
ˆ 2π

0
(g0 + g2 cos 2 (α− nppΘ) cos (2θd − 2α)) dα

= µ0ler
3

2
N2

(1)

1

2
·
ˆ 2π

0

(
g0 + g2

(
cos (2α− 2nppΘ − 2θd + 2α)

2
+

cos (2α− 2nppΘ + 2θd − 2α)

2

))
dα

= µ0ler
3

2
N2

(1)

1

2
·
ˆ 2π

0

(
g0 + g2

(
cos (4α− 2nppΘ − 2θd)

2
+

cos (2θd − 2nppΘ)

2

))
dα

⇒ Ldd = µ0ler
3

2
N2

(1)π

(
g0 + g2

cos 2 (θd − nppΘ)

2

)
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As a result, the corresponding stator dq inductance matrix becomes

Ldqns =

Ldd Ldq 0
Lqd Lqq 0
0 0 0

+

Lσ −Mσ 0 0
0 Lσ −Mσ 0
0 0 Lσ + 2Mσ


=

Lave + Ldiff cos 2 (θd − nppΘ) −Ldiff sin 2 (θd − nppΘ) 0
−Ldiff sin 2 (θd − nppΘ) Lave − Ldiff cos 2 (θd − nppΘ) 0

0 0 Ln

 (132)

where, out of convenience, we have introduced three constant inductance parameters
that take leakage inductance into account:

Ld , Lσ −Mσ + µ0ler
3
2N

2
(1)π

(
g0 + 1

2g2

)
Lq , Lσ −Mσ + µ0ler

3
2N

2
(1)π

(
g0 − 1

2g2

)
Ln , Lσ + 2Mσ

(133)

that further derive the average and difference of the dq-frame inductances:

Lave ,
Ld + Lq

2
= µ0ler

3

2
N2

(1)πg0 + Lσ −Mσ (134)

Ldiff ,
Ld − Lq

2
= µ0ler

3

2
N2

(1)π
1

2
g2 (135)

2.8. *Inductances in Stationary αβ Frame

Let θd = 0, and the following results are useful for modeling of salient pole permanent
magnet synchronous machines in stationary αβ-frame:

Lαβγs = Ldqns|
θd=0

=

 Lα Lαβ 0
Lαβ Lβ 0

0 0 Lγ

 (136)

with 
Lα = Lave + Ldiff cos (2nppΘ)

Lβ = Lave − Ldiff cos (2nppΘ)

Lαβ = Ldiff sin (2nppΘ)

Lγ = Ln

(137)

where unlike inductance parameters Ld and Lq, note αβ inductances are function of
rotor angle Θ, meaning this winding is capable of producing reluctance torque. A well
acknowledged paper using those nonlinear inductances is [11].

2.9. Notations for Coils and Leakage Inductance

In sub-section 2.5, we have been adding subscript r to indicate rotor. From now
on, since both stator and rotor circuits are modeled, we should stick with using full
subscripts in the inductance symbols. In fact, the parameter symbols Ld and Lq are
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only used when there is no rotor circuit, i.e., in a permanent magnet synchronous
machine. Therefore, to be crystal clear, let’s further add subscript s to indicate the
inductance of stator coils such that

Ldsds , Ldd

Ldsqs , Ldq

Lqsqs , Lqq

Lls , Lσ −Mσ

(138)

where, for example, subscript ds indicate the virtual d-axis coil on stator, and ls

means “stator leakage”.
Finally, similar to the case of stator, in an actual machine. the magnetic circuit of the

rotor coils also has leakage path, and generally speaking, the rotor leakage inductance
is not equal to the stator leakage inductance. For this course, the rotor d-axis leakage
inductance is denoted as Llr.

2.10. DQ Modeling of AC Machine

Since this sub-section, we are considering actual machines that has leakage in magnetic
circuit, so pay attention to the subscripts s and r.

Consider a generic electrical machine. A three phase winding is placed within the
stator, and the rotor is equipped with a multi-phase rotor winding (usually more than
3 phases) and a npp-pole-pair field winding.

2.10.1. Voltage Equations

The dynamics of stator circuits are according to Faraday’s law of induction as follows

uabcs −Rabcsiabcs =
d

dt
ψabcs (139)

where the symmetry assumption leads to Rabcs = RI3. Applying Park transformation
to each side of (139) yields

(139)⇒ T (uabcs −Rabcsiabcs) = T
d

dt

([
T−1T

]
ψabcs

)
⇒ udqns −Ridqns = T

d

dt

([
T−1

]
ψdqns

)
= T

(
d

dt
T T
)
ψdqns + TT−1 d

dt
ψdqns

⇒ udqns −Ridqns = T

(
d

dt
T T
)
ψdqns +

d

dt
ψdqns

(140)
Similarly, we can use a multi-phase transformation (120) to convert the rotor circuits

into dq circuits. Even though we do not need to know the phase number of the rotor
circuits, let’s consider, without loss of generality, the symmetric m = 5 phase rotor
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circuits: 
u1

u2

u3

u4

u5

−Rr

i1
i2
i3
i4
i5

 =
d

dt


ψ1

ψ2

ψ3

ψ4

ψ5

 (141)

⇒ Tm


u1

u2

u3

u4

u5

−RrTm

i1
i2
i3
i4
i5

 = Tm
d

dt

T TmTm

ψ1

ψ2

ψ3

ψ4

ψ5


 (142)

⇒
[
udr
uqr

]
−Rr

[
idr
iqr

]
= Tm

(
d

dt
T Tm

)[
ψdr
ψqr

]
+ TmT

T
m

d

dt

[
ψdr
ψqr

]
(143)

⇔ udqr −Rridqr = Tm

(
d

dt
Tm

T

)
ψdqr +

d

dt
ψdqr (144)

where Tm(θd−nppΘ) is the extended version of the Park transformation for converting
rotor m-phase coils (that are already rotating along the air gap) to dq-plane.19

Finally, the voltage equation for the circuit of the field winding is

ufr −Rfrifr =
d

dt
ψfr (145)

2.10.2. Flux Equations

We have transformed all winding into dq-plane (which is done by converting all electri-
cal circuit variables and winding functions into dq-plane). Each symmetric polyphase
winding corresponds to a pair of d-axis coil and q-axis coil, thus in total there are 5
coils denoted by a unique subscript among ds, qs, dr, qr, fr. Note the neutral coil
with subscript ns is not useful for this course and can be simply discarded. The flux

19One can verify that T TmTm 6= Im×m and in fact, it is a constant matrix:

T TmTm =


0.4 −0.1 + 0.1

√
5 −0.1

√
5− 0.1 −0.1

√
5− 0.1 −0.1 + 0.1

√
5

−0.1 + 0.1
√

5 0.4 −0.1 + 0.1
√

5 −0.1
√

5− 0.1 −0.1
√

5− 0.1

−0.1
√

5− 0.1 −0.1 + 0.1
√

5 0.4 −0.1 + 0.1
√

5 −0.1
√

5− 0.1

−0.1
√

5− 0.1 −0.1
√

5− 0.1 −0.1 + 0.1
√

5 0.4 −0.1 + 0.1
√

5

−0.1 + 0.1
√

5 −0.1
√

5− 0.1 −0.1
√

5− 0.1 −0.1 + 0.1
√

5 0.4


In order to derive an identity matrix to be used in (142), we actually must introduce the full square multiphase

Park transformation matrix:

Tm×m =

√
2

5


cos (θ1 (t)) sin

(
θ1 (t) + π

10

)
− cos

(
θ1 (t) + π

5

)
− sin

(
θ1 (t) + 3π

10

)
cos
(
θ1 (t) + 2π

5

)
− sin (θ1 (t)) cos

(
θ1 (t) + π

10

)
sin
(
θ1 (t) + π

5

)
− cos

(
θ1 (t) + 3π

10

)
− sin

(
θ1 (t) + 2π

5

)
cos (θ3 (t)) − sin

(
θ3 (t) + 3π

10

)
sin
(
θ3 (t) + π

10

)
cos
(
θ3 (t) + 2π

5

)
− cos

(
θ3 (t) + π

5

)
− sin (θ3 (t)) − cos

(
θ3 (t) + 3π

10

)
cos
(
θ3 (t) + π

10

)
− sin

(
θ3 (t) + 2π

5

)
sin
(
θ3 (t) + π

5

)
√

2
2

√
2

2

√
2
2

√
2

2

√
2
2


which satisfies T Tm×mTm×m = Im×m. Note the full transformation will have two independent d-axis angles,

denoted as θ1 = θd and θ2, respectively. We will only concern the two equations involved with θ1. It is interesting

to mention that this is not the only form that a multiphase Park transformation matrix Tm×m can take.
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equation of stator coils and rotor coils are respectively:

ψdqns = Ldqnsidqns +Ldqnsridqfr (146)

ψdqfr = (Ldqnsr)
T idqns +Ldqfridqfr (147)

where it is worth noting that the mutual linkage from stator to rotor is the same as
the mutual linkage from rotor to stator, hence the presence of the transposed mutual
inductance matrix term (Ldqnsr)

T .
The inductance matrices are defined as

Ldqns =

Lls + Ldsds Ldsqs Ldsns
Lqsds Lls + Lqsqs Lqsns
Lnsds Lnsqs Ln + Lnsns

 =

Lls + Ldsds Ldsqs 0
Lqsds Lls + Lqsqs 0

0 0 Ln


(148)

Ldqnsr =

Ldsdr Ldsqr Ldsfr
Lqsdr Lqsqr Lqsfr
Lnsdr Lnsqr Lnsfr

 =

Ldsdr Ldsqr Ldsfr
Lqsdr Lqsqr Lqsfr

0 0 0

 (149)

Ldqfr =

Llr + Ldrdr Ldsqr Ldrfr
Lqsdr Llr + Lqsqr Lqsfr
Lfsdr Lfsqr Lfsfr

 (150)

The mutual inductance between stator and rotor coils can be derived (cf. (128)) as

Ldsdr = µ0ler

√
3

2

√
m

2
N(1)Nr(1)π

(
g0 + g2

cos 2 (θd − nppΘ)

2

)
(151)

Lqsqr = µ0ler

√
3

2

√
m

2
N(1)Nr(1)π

(
g0 − g2

cos 2 (θd − nppΘ)

2

)
(152)

with no leakage inductance. The cross-axes-coupling inductance is

Ldsqr = −µ0ler

ˆ 2π

0

√
3

2
N(1)

√
m

2
Nr(1) cos (θd − α) sin (θd − α) g−1

e dα

= −µ0ler

√
3

2

√
m

2
N(1)Nr(1)

ˆ 2π

0

1

2
sin 2 (θd − α) (g0 + g2 cos 2 (α− nppΘ)) dα

= −µ0ler

√
3

2

√
m

2
N(1)Nr(1)

π

2
g2 sin 2 (θd − nppΘ)

(153)
which is apparently equal to zero when there is no rotor saliency, i.e., g2 = 0.

2.10.3. Rotor Oriented Frame

Again, we find that the inductance matrices can be greatly simplified if we use a
reference frame whose d-axis angle equals to rotor’s electrical angular position nppΘ.
To reduce the number of inductance parameters, let the dq-frame be fixed to the rotor:

θd = nppΘ (154)
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and as a result, e.g., the stator inductance variables become constant:

Ldsds + Lls = Ldd + Lls = Ld (155)

Lqsqs + Lls = Lqq + Lls = Lq (156)

and the dq-axes are decoupled such that for example: Ldsqs = Ldsqr = 0 even when
saliency is present, i.e., when g2 6= 0.

2.10.4. Over-parametrization Problem

The inductance parameters Ldsds, Ldsdr and Ldrdr only differ by a factor, yet they
are treated as three unknown circuit parameters. This inevitably leads to over-
parametrization of our model, see also the previously derived model (60) from last
chapter.

In order to reduce the number of parameters, the flux equations are rewritten com-
ponentwise in terms of the stator constant magnetizing inductances Ldd and Lqq:

ψds = (Ldsdsids + 0 + 0) +

Ldd√m
2 Nr(1)√
3
2N(1)

idr + 0 + Ldsfrifr


ψqs = (0 + Lqsqsiqs + 0) +

0 + Lqq

√
m
2 Nr(1)√
3
2N(1)

iqr + 0


ψdr =

Ldd√m
2 Nr(1)√
3
2N(1)

ids + 0 + 0

+

Llr + Ldd

√m
2 Nr(1)√
3
2N(1)

2 idr + 0 + Ldrfrifr


ψqr =

0 + Lqq

√
m
2 Nr(1)√
3
2N(1)

iqs + 0

+

0 +

Llr + Lqq

√m
2 Nr(1)√
3
2N(1)

2 iqr + 0


ψfr = (Lfrdsids + 0 + 0) + (Lfrdridr + 0 + Lfrfrifr)

(157)
Since the rotor flux linkage and rotor currents are not measured in practice, we are
less concerned with their actual values. Let’s define a change of variables using the

turn ratio transformation ksr =
√

m
2 Nr(1)/

(√
3
2N(1)

)
:

i′dqr = ksridqr (158)

ψ′dqr = (ksr)
−1ψdqr (159)

L′lr = k−2
sr Llr (160)

This practice is known as referring the rotor circuits to the stator, and the resulting
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flux equations have even less inductance parameters:

ψds = (Ldsdsids + 0 + 0) +
(
Lddi

′
dr + 0 + Ldsfrifr

)
ψqs = (0 + Lqsqsiqs + 0) +

(
0 + Lqqi

′
qr + 0

)
ψ′dr = (Lddids + 0 + 0) +

((
L′lr + Ldd

)
i′dr + 0 + k−1

sr Ldrfrifr
)

ψ′qr = (0 + Lqqiqs + 0) +
(
0 +

(
L′lr + Lqq

)
i′qr + 0

)
ψfr = (Lfrdsids + 0 + 0) +

(
Lfrdrk

−1
sr i
′
dr + 0 + Lfrfrifr

)

⇔


ψdqs =

[
Lls + Ldd 0

0 Lls + Lqq

]
idqs +

[
Ldd 0

0 Lqq

]
i′dqr +

[
Ldsfrifr

0

]

ψ′dqr =

[
Ldd 0

0 Lqq

]
idqs +

[
L′lr + Ldd 0

0 L′lr + Lqq

]
i′dqr +

[
k−1
sr Ldrfrifr

0

]
ψfr = Lfrdsids + Lfrdrk

−1
sr i
′
dr + Lfrfrifr

(161)
As a result of referring the rotor circuits to the stator, we find out that the stator flux
ψdqs and the rotor flux ψ′dqr are both related to an intermediate flux linkage, known
as the air gap flux linkage (denoted as ψdqg), which is a concept used in motor control,
and it equals to stator flux minus stator leakage flux, or rotor flux minus rotor leakage
flux:

ψdqg = ψdqs − Llsidqs
ψdqg = ψ′dqr − L′lridqr

(162)

which implies that Ldsfr = k−1
sr Ldrfr, and in other words, the mutual inductance Ldrfr

can be referred to stator and there is no need to use Ldrfr anymore.

2.10.5. Results in Rotor Reference Frame θd = nppΘ

The dq-frame voltage equations are rewritten as
udqns −Ridqns = T

(
d
dtT

T
)
ψdqns + d

dtψdqns
udqr −Rridqr = Tm

(
d
dtTm

T
)
ψdqr + d

dtψdqr
ufr −Rfrifr = d

dtψfr

(163)

which can be further simplified using the properties in (111) and a skew-symmetric
matrix J =

[
0 −1
1 0

]
as follows

(163)⇒


udqs −Ridqs = J dθd

dt ψdqs + d
dtψdqs

udqr −Rridqr = J d(θd−nppΘ)
dt ψdqr + d

dtψdqr
ufr −Rfrifr = d

dtψfr

(164)

in which the rotor voltage equation needs to be referred to stator. To this end, multi-
plying k−1

sr to both sides yields

udqr
ksr
− Rr
ksr

1

ksr
i′dqr = J

d (θd − nppΘ)

dt
ψ′dqr +

d

dt
ψ′dqr (165)
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with the following definitions for rotor voltage and rotor resistance:

u′dqr = udqrk
−1
sr

R′r = Rrk
−2
sr

(166)

To solve the ordinary differential equations (ODEs) (164), one needs to express
currents in terms of flux linkages. You can choose to take inverse of the R5×5 inductance
matrix with the aid of SymPy package, but of course I have a better way to summarize
the results. First, we need to re-order the vector and matrix:

ψds
ψ
′

dr
ψfr
ψqs
ψ
′

qr

 =


Lls + Ldd Ldd Ldf 0 0
Ldd L

′

lr + Ldd Ldf 0 0
Ldf Ldf Lfr 0 0
0 0 0 Lls + Lqq Lqq
0 0 0 Lqq L

′

lr + Lqq



ids
i
′

dr
ifr
iqs
i
′

qr

 (167)

which apparently consists of two block matrices. Therefore, we have the following
solutions for currents:

 ids
i′dr
ifr

 =

Lfr (L′lr + Ldd)− L2
df −LddLfr + L2

df −LdfL′lr
−LddLfr + L2

df (Lls + Ldd)Lfr − L2
df −LdfLls

−LdfL′lr −LdfLls LlsL
′
lr + Ldd (L′lr + Lls)

 ψds
ψ′dr
ψfr


(Lls + Ldd)LfrL

′
lr + LddLfrLls − L2

df

(
L′lr + Lls

)
[
iqs
i′qr

]
=

1

L′lrLls + L′lrLqq + LlsLqq

[
L′lr + Lqq −Lqq
−Lqq Lls + Lqq

] [
ψqs
ψ′qr

]
(168)

This simplified results are due to the fact that the rotor oriented frame decouples the
magnetic linkage between the d-axis coils (ds, dr, fr) and the q-axis coils (qs, qr), i.e.,
Ldq = 0.

In this DQ model, there are two kinds of electromotive forces, i.e., transformer
electromotive force and rotary electromotive force. The latter exists only when the
circuits are transformed into a dq-frame that is not stationary with respect to the
original circuits.

The electrical power input is:

Pelec,in = udqs · idqs + u′dqr · i′dqr + ufrifr

=

(
Ridqs · idqs + J

dθd
dt
ψdqs · idqs +

d

dt
ψdqs · idqs

)
+

(
R′ri

′
dqr · i′dqr +

d

dt
ψ′dqr · i′dqr

)
+

(
Rfri

2
fr + ifr

d

dt
ψfr

)
(169)

where the term containing rotary electromotive force is responsible for electromechan-
ical power conversion or in other words, passing electrical power from stator to rotor
shaft.

Based on (169), the electromagnetic torque can be obtained by the energy method
as follows

ΩTem = J
dθd
dt
ψdqs · idqs = J

dnppΘ

dt
ψdqs · idqs

⇒ Tem =
dnppΘ

dt

Ω
Jψdqs · idqs = npp

(
Jψdqs

)T
idqs = nppψdqs × idqs

(170)
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2.10.6. Brief Summary

Based on preceding development, a clean model taking all turn ratio conversions into
account is finally derived as follows:

d
dtψdqs = udqs −Ridqs − J dθd

dt ψdqs
d
dtψ

′
dqr = u′dqr −R′ri

′
dqr − J

d(θd−nppΘ)
dt ψ′dqr

d
dtψfr = ufr −Rfrifr

(171)

where the d-axis angle θd can still be arbitrarily set.
In order to solve this model numerically, we need to set a rotor oriented reference

frame with θd = nppΘ, and then represent currents in terms of flux linkages

Ddids =
[
Lfr

(
L′lr + Ldd

)
− L2

df

]
ψds +

(
−LddLfr + L2

df

)
ψ′dr +

(
−LdfL′lr

)
ψfr

Ddi
′
dr =

[
Lfr (Lls + Ldd)− L2

df

]
ψ′dr +

(
−LddLfr + L2

df

)
ψds + (−LdfLls)ψfr

Ddifr =
[
Ldd

(
L′lr + Lls

)
+ LlsL

′
lr

]
ψfr +

(
−LdfL′lr

)
ψds + (−LdfLls)ψ′dr

Dqiqs =
(
L′lr + Lqq

)
ψqs − Lqqψ′qr

Dqi
′
qr = (Lls + Lqq)ψ

′
qr − Lqqψqs

(172)

where the determinants of the d-axis and q-axis inductance matrices are respectively:

Dd = (Lls + Ldd)LfrL
′
lr + LddLfrLls − L2

df

(
L′lr + Lls

)
Dq = L′lrLls + L′lrLqq + LlsLqq

(173)

The mechanical subsystem is:

d

dt
θd = npp

d

dt
Θ = nppΩ

d

dt
Ω =

1

Js
(Tem − TL)

Tem = npp

(
Jψdqs

)T
idqs = npp (−ψqsids + ψdsiqs)

(174)

We can do transient simulation of an electrically-excited wound-rotor synchronous
machine using models of the electrical and mechanical sub-systems.

2.11. DQ Modeling of Induction Machine

Removing field winding ifr = 0 and assuming there is no saliency g2 = 0 and no rotor
voltage u′dqr = 0, we have the dq model for induction machine as

ψdqs = Lsidqs + Lmi
′
dqr

ψ′dqr = Lmidqs + Lri
′
dqr

udqs −Ridqs = J
dθd
dt
ψdqs +

d

dt
ψdqs

u′dqr −R′ri′dqr = J
d (θd − nppΘ)

dt
ψ′dqr +

d

dt
ψ′dqr

(175)
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Figure 10. The T-equivalent-circuit of induction machine at steady state, derived using (179),(180), and
(182).

where Ls = Lm + Lls, Lr = Lm + L′lr and Lm = Ldd = Lqq.
Without the presence of saliency, there is no need to fix the dq-frame to the rotor

anymore. Let θd = 0, we have the αβ-frame model of induction machine as

θd = 0⇒


ψαβs = Lsiαβs + Lmi

′
αβr

ψ′αβr = Lmiαβs + Lri
′
αβr

uαβs −Riαβs = d
dtψαβs

u′αβr −R′ri
′
αβr = −nppΩJψ

′
αβr + d

dtψ
′
αβr

(176)

where note the subscripts d and q are replaced with new subscripts α and β to em-
phasize the fact θd = 0. Note from now on, symbol α no longer denotes the angular
location in air gap, symbol β no longer stands for the per unit pole arc, whereas they
are the axes of the αβ-frame.

2.12. Steady State Behavior of Induction Machine

It can be shown that at steady state, when all variables in αβ-frame are sinusoidal
with angular speed of ωsyn, it is valid to simply do the following substitution:

d

dt
= Jωsyn (177)

The steady state voltage equation becomes:

(177)⇒

{
uαβs −Riαβs = Jωsynψαβs
u′αβr −R′ri

′
αβr = (ωsyn − nppΩ)Jψ′αβr

(178)

2.12.1. The T Equivalent Circuit of Induction Machine

When drawing the equivalent circuit of the voltage equations (see Fig. 10), the follow-
ing derivation is useful:

uαβs −Riαβs = Jωsynψαβs

= JωsynLlsiαβs + JωsynLm
(
iαβs + i′αβr

)
(179)

u′αβr −R′ri′αβr = (ωsyn − nppΩ)Jψ′αβr
= JωsynL

′
lriαβr + JωsynLm

(
iαβs + i′αβr

)
− nppΩJψ

′
αβr (180)
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The last voltage term in (180) is not in synchronous speed and therefore it seems
it cannot be represented as electrical component in the equivalent circuit. In fact, it
is closely related to the electromagnetic torque. To see this, let’s derive the torque
expression in terms of rotor side variables [recall the results in (170)]:

Tem = npp

(
Lsidqs + Lmi

′
dqr

)
× idqs = nppLmi

′
dqr × idqs

= npp
Lm
Lr

Lri
′
dqr × idqs = npp

Lm
Lr

(
Lmidqs + Lri

′
dqr

)
× idqs

= npp
Lm
Lr
ψ′dqr × idqs ≡ npp

Lm
Lr
ψ′αβr × iαβs

= npp
Lm
Lr
ψ′αβr ×

ψ′αβr − Lri′αβr
Lm

= nppψ
′
αβr ×

(
−i′αβr

)
= npp

(
Jψ′αβr

)T (−i′αβr)
= npp

(
u′αβr −R′ri

′
αβr

ωsl

)T (
−i′αβr

)
= npp

R′r
ωsl
i′Tαβri

′
αβr = npp

ωsyn

ωsl

R′r
ωsyn

i′Tαβri
′
αβr = npp

1

ωsyn

R′r
S
i′Tαβri

′
αβr

(181)

where the slip ratio is defined as S = ωsl/ωsyn and the electrical slip angular speed

defined as ωsl = ωsyn−nppΩ. Note npp

(
Jψ′αβr

)T
appears in (181), and it turns out this

term times Ω can be modeled as the voltage drop erot across a “mechanical resistance”
calculated as 1−S

S R′r:

erot = nppΩJψ
′
αβr = npp

Ω

ωsyn

R′r
S

(
−i′αβr

)
=

1− S
S

R′r
(
−i′αβr

)
⇒ Fig. 10 (182)

The power consumed by the “mechanical resistance” 1−S
S R′r is equal to machine’s

mechanical power ΩTem:

(181) and (182)⇒ ΩTem = npp

(
Jψ′αβr

)T (−i′αβr) =
1− S
S

Rr

(
i′αβr · i′αβr

)
2.12.2. Complex Number Analysis

In order to do circuit analysis, we are going to map any steady state R2 circuit variable
into a complex number, e.g., the αβ-frame voltage becomes

uαβs =

[
uαs
uβs

]
=

[
U cos (ωsynt+ φ)
U sin (ωsynt+ φ)

]
≡ U cos (ωsynt+ φ) + jU sin (ωsynt+ φ) = uαs + juβs = Uej(ωsynt+φ)

(183)

2.12.3. Torque Slip Curve (Mechanical Characteristics of Grid Fed Induction Motor)

It is of interest to derive the torque expression when an induction machine (that is
already rotating at a speed Ω) is directly connected to the three phase grid (which is a
constant-voltage, constant-frequency voltage source). In fact, most of the three phase
induction machines at service are excited in this way.



EE275 Spring’23 55 Chen, Jiahao

 

Figure 11. The T-equivalent-circuit of the induction machine at steady state with the network to the left of
point A and B has been transformed using an equivalent voltage source ueq and equivalent impedance Zeq.

To derive a torque expression in terms of its input (which is voltage) instead of
inductance state (which is current), we need to use the Ohm’s law to eliminate rotor
currents in torque (181). The rotor currents can be calculated with the aid of the
Thevenin’s theorem (see Fig. 11) as

i′αβr =
ueq

Zeq + jωsynL′lr +R′rS−1
(184)

where the equivalent voltage and equivalent impedance are:

ueq = uαβs
jωsyn (Lls + Lm)

R+ jωsyn (Lls + Lm)
≈ uαβs

Zeq = Req + jXeq =

(
1

R+ jωsynLls
+

1

jωsynLm

)−1

=

(
jωsynLm +R+ jωsynLls
(R+ jωsynLls) jωsynLm

)−1

(185)
With the expression for rotor currents available, now the torque as a function of

slip S can be derived as:

Tem(S) =
npp

ωsyn

R′r
S

∣∣i′αβr∣∣2 =
npp

ωsyn

R′r
S

|ueq|2

(Req +R′rS−1)2 +
(
Xeq + jωsynL′lr

)2 (186)

which described the torque-slip curve of an induction machine. An example of the
function Tem(S) is plotted in Fig. 12.

The maximum torque is also known as breakdown torque—if the load torque is
higher than the maximum torque, the motor operation is going to break down. The
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Figure 12. The torque-slip curve for constant-voltage, constant-frequency operation. Figure credit: [3].

breakdown slip corresponding to the breakdown torque is20

SmaxTem
=

R′r√
R2

eq +
(
Xeq + jωsynL′lr

)2 (187)

and the breakdown torque is

Tem(SmaxTem
) =

npp |ueq|2

ωsyn2

1√
R2

eq +
(
Xeq + jωsynL′lr

)2
+Req

(188)

20The full derivation is

Tem =
npp

ωsyn

R′r
S

|ueq|2(
Req +

R′r
S

)2
+
(
Xeq + jωsynL′lr

)2
=

npp

ωsyn

R′r
S

|ueq|2

R2
eq + 2

R′r
S
Req +

R2
r

S2 +
(
Xeq + jωsynL′lr

)2
=
nppR′r |ueq|2

ωsyn

1

S
[
R2

eq +
(
Xeq + jωsynL′lr

)2]
+
R2
r
S

+ 2R′rReq

=
nppR′r |ueq|2

ωsyn

1

SZ2 +
R2
r
S

+ 2R′rReq

with Z2 = R2
eq +

(
Xeq + jωsynL

′
lr

)2
dTem

dS
=
nppR′r |ueq|2

ωsyn

−1(
SZ2 +

R2
r
S

+ 2R′rReq

)2 (Z2 +
−R2

r

S2

)
= 0⇒

(
Z2 +

−R2
r

S2

)
= 0

⇒ S =
R′r
Z

=
R′r√

R2
eq +

(
Xeq + jωsynL′lr

)2
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2.12.4. No Load Test

Let S = 0, which can be achieved by connecting the induction motor’s shaft to a prime
mover that spins at the synchronous speed of the induction motor, and we have

S = 0⇒

{
uαβs −Riαβs = Jωsynψαβs = Jωsyn (Llsiαβs + Lmiαβs) = JωsynLsiαβs

u′αβr −R′ri
′
αβr = 0⇒ i′αβr = 0

⇒ Z0 =
uαβs
iαβs

=
Riαβs + JωsynLsiαβs

iαβs
= R+ JωsynLs

(189)
As a result, R and Ls can be solved by measuring the no load impedance Z0.
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2.12.5. Blocked Rotor Test

Let S = 1, which is done by mechanically blocking the rotor from rotation, and we
have 21

ZL = RL+JXL =
uαβs
iαβs

=

(
R+

R′r (ωsynLm)2

R2
r + (ωsynLr)

2

)
+J

(
ωsynLls + ωsynLm

R2
r + (ωsynLr) (ωsynL

′
lr)

R2
r + (ωsynLr)

2

)
(190)

which is not enough for solving the circuit parameters, because there are three un-
known parameters L′lr, Lls, R

′
r given the two equations.

There is an iteration based solution provided in IEEE Std 112-2004 [12, Sec. 5.9],
where an assumption of the form Lls = kL′lr is a must. I have no idea how this
iteration trick is derived, but note the iteration itself is no magic while the assumption
Lls = kL′lr is the key (which reduces the unknown parameter by one) to our dilemma.

21The full derivation is here:

S = 1

⇒ u′αβr −R′ri′αβr = ωsynJψ
′
αβr

⇒ i′αβr = −ωsyn

R′r
Jψ′αβr = −ωsyn

R′r
J
(
Lmiαβs + Lri

′
αβr

)
⇒ i′αβr = −ωsyn

R′r
JLmiαβs −

ωsyn

R′r
JLri

′
αβr

⇒ i′αβr = −ωsyn

R′r
JLmiαβs

(
1 +

ωsyn

R′r
JLr

)−1

uαβs −Riαβs = Jωsynψαβs = JωsynLlsiαβs + JωsynLm

[
iαβs −

ωsyn

R′r
JLmiαβs

(
1 +

ωsyn

R′r
JLr

)−1
]

⇒ ZL =
uαβs

iαβs
= R+ JωsynLls + JωsynLm

1−
ωsyn

R′r
JLm

1 +
ωsyn

R′r
JLr


⇒ ZL =

uαβs

iαβs
= R+ JωsynLls + JωsynLm

1 +
ωsyn

R′r
JL′lr

1 +
ωsyn

R′r
JLr


⇒ ZL =

uαβs

iαβs
= R+ JωsynLls + JωsynLm

(
1 +

ωsyn

R′r
JL′lr

)(
1− ωsyn

R′r
JLr

)
1 +

(
ωsyn

R′r
Lr
)2

⇒ ZL =
uαβs

iαβs
= R+ JωsynLls + JωsynLm

(
1− ωsyn

R′r
JLr

)
+
(
ωsyn

R′r
JL′lr −

ωsyn

R′r
JLr

ωsyn

R′r
JL′lr

)
1 +

(
ωsyn

R′r
Lr
)2

⇒ ZL =
uαβs

iαβs
= R+ JωsynLls + JωsynLm

1− ωsyn

R′r
JLm +

ωsynLr
R′r

ωsynL
′
lr

R′r

1 +
(
ωsyn

R′r
Lr
)2

⇒ ZL =
uαβs

iαβs
= R+ JωsynLls +

JωsynLm +
(ωsynLm)2

R′r
+
ωsynLr
R′r

ωsynL
′
lr

R′r
JωsynLm

1 +
(
ωsyn

R′r
Lr
)2

⇒ ZL =
uαβs

iαβs
= R+ JωsynLls +

JωsynLmR2
r +R′r (ωsynLm)2 + (ωsynLr)

(
ωsynL′lr

)
JωsynLm

R2
r + (ωsynLr)

2

⇒ ZL = RL + JXL =

(
R+

R′r (ωsynLm)2

R2
r + (ωsynLr)

2

)
+ J

(
ωsynLls +

ωsynLmR2
r + (ωsynLr)

(
ωsynL′lr

)
ωsynLm

R2
r + (ωsynLr)

2

)

⇒ ZL = RL + JXL =

(
R+

R′r (ωsynLm)2

R2
r + (ωsynLr)

2

)
+ J

(
ωsynLls + ωsynLm

R2
r + (ωsynLr)

(
ωsynL′lr

)
R2
r + (ωsynLr)

2

)
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2.12.6. Inverse-Γ Equivalent Circuit of Induction Machine

Let’s look at the rotor flux linkage definition and play with the two variables that have
been referred to stator, i.e., the two primed symbols—ψ′dqr and i′dqr

ψ′dqr = Lmidqs + Lri
′
dqr

⇒ Lm
Lr
ψ′dqr =

Lm
Lr

Lmidqs +
Lm
Lr

Lm
Lr
Lm

i′dqr

⇒ ψdqµ = Lµidqs + Lµidq,req

(191)

from which, we have reduced the number of unknown circuit parameter by one and Lµ
is our new magnetizing inductance. In other words, with a simple change of variables
for rotor current and rotor flux linkage:

idq,req =

(
Lm
Lr

)−1

i′dqr (192)

ψdqµ =
Lm
Lr
ψ′dqr (193)

the electrical circuit of induction machine can be parameterized using only four param-
eters: R,Ls, Lµ, Rreq [13], as shown in Fig. 13, where note Ls −Lµ corresponds to the

total leakage inductance, and the definition of equivalent rotor resistance Rreq , L2
m

L2
r
R′r

is a natural result by using new variables in rotor voltage equation.

 

Figure 13. The inverse Γ equivalent circuit of induction machine.

As a result, the blocked rotor test gives an impedance measurement as follows:

ZL = RL+jXL =
uαβs
iαβs

=

(
R+

Rreq (ωsynLµ)2

R2
req + (ωsynLµ)2

)
+J

(
ωsyn (Ls − Lµ) + ωsynLµ

R2
req

R2
req + (ωsynLµ)2

)
(194)

which gives two equations for solving two unknowns of Rreq and Lµ (note R and Ls
are already known):

Rreq =

[(
RL −R

XL − ωsynLs

)2

+ 1

]
(RL −R) (195)

ωsynLµ =

√
(RL −R)R2

req

Rreq − (RL −R)
(196)

and finally if we assume that the stator leakage inductance is equal to rotor leakage
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inductance: Lls = L′lr, we can convert the inverse-Γ circuit into T-equivalent circuit:

Lr = Ls

Lm =
√
LµLr

Lls = Ls − Lm
L′lr = Lr − Lm
R′r =

(
Lm
Lr

)−2
Rreq

(197)

2.12.7. Improvement with Multiple Measurement of No-Load Data

 

Figure 14. The no-load measurement results of an induction motor at S ≈ 0. If S = 0, then the mechanical

power should be Pmech = 0, and in this case the friction and windage loss are compensated by another motor

coupled to the shaft.

If we have multiple Z0 measurement at different voltages, draw the no-load power
P |S=0 versus voltage squared uαβs curve, and fit the data points to a straight line, as
shown in Fig. 14. It is shown that the no load power consists of three parts:

P |S=0 = PFe + PCu + Pmech (198)

Since the copper loss power can be easily calculated as R|iαβs|2, the iron loss power
can be measured approximately as a function of voltage squared. In finite element
analysis software (e.g., JMAG Designer), the iron loss power can be calculated as a
volume integral using the following loss equation:

PFe =

ˆ
V

(
KhystB

2f +KeddyB
2f2
)

dV (199)

Since the frequency is fixed to the synchronous value, PFe’s voltage squared dependency
stems from the coefficient of magnetic flux density squared B2. Example values for
the hysteresis loss coefficient and eddy-current loss coefficient are provided for M-19
Gauge 29 steel as follows:

Khyst = 143 W/
(
m3T2Hz

)
Keddy = 0.53 W/

(
m3T2Hz2

) (200)
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The iron loss is zero if an ideal magnetic circuit is assumed, so it is not predicted in
our derived “linear magnetic circuit” model.

If your experimental data show that the fitted curve has a nonzero intercept with
y-axis as is in Fig. 14, this indicates that the condition S = 0 is likely violated. In this
situation, the no-load test data can still be used by subtracting Pmech from P |s=0 at
all data points.

2.13. DQ Modeling of Permanent Magnet Synchronous Machine

Removing rotor winding from the DQ model (164), i.e., letting i′dqr = 0, we have the
2nd-order dq model for permanent magnet synchronous machine:

θd = nppΘ

ψdqs =

[
Ld 0
0 Lq

]
idqs +

[
ψPM

0

]
udqs −Ridqs = J

dθd
dt
ψdqs +

d

dt
ψdqs = J

dθd
dt

([
Ldids + ψPM

Lqiqs

])
+

d

dt

([
Ld 0
0 Lq

]
idqs

)
(201)

where recall the parameters Ld and Lq from (133) that include leakage inductance,

and the mutual flux linkage due to the PM is defined as ψPM , Ldsfrifr.
Unlike induction machine, since Ldq is not zero when θd = 0, the stationary αβ

model for a PM motor uses inductances defined in (137) (in which the inductance’s
dependency on rotor angle Θ leads to nonlinear electrical dynamics that are difficult
to be analyzed), and is not discussed in this course.

The electrical power flowing into the rotary electromotive force

J
dθd
dt

([
Ldids + ψPM

Lqiqs

])
is converted into mechanical power via the electromagnetic torque:

TemΩ = (idqs)
T J

dθd
dt

([
Ldids + ψPM

Lqiqs

])
⇒ Tem = npp [(Ldids + ψPM) iqs − Lqiqsids] = nppψPMiqs + npp (Ld − Lq) idsiqs

in which nppψPMiqs is the reaction torque between the PM and the armature, and
npp (Ld − Lq) idsiqs is the reluctance torque due to the saliency: Ld 6= Lq.

2.14. Steady State Behavior of Permanent Magnet Synchronous Machine

2.14.1. The Equivalent Circuit and Two Reaction Theory

An attentive equivalent circuit based on the dq model (201) is shown in Fig. 15.
Apparently, since the two axes are not symmetric in the presence of rotor saliency,
it is better to separate the “vector equivalent circuit” into two component circuit at
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Figure 15. The equivalent circuit of a permanent magnet synchronous machine using (201).

d-axis and q-axis as:

uds −Rids = −Lqiqs
dθd
dt

+ Ld
d

dt
ids

uqs −Riqs = (Ldids + ψPM)
dθd
dt

+ Lq
d

dt
iqs

(202)

The analysis based on the steady-state behaviors using the d-axis equation and q-axis
equation, is known as two reaction analysis. At steady state, since phase currents are
balanced and sinusoidal, the dq-frame currents are constant, thus (202) becomes

uds −Rids = −Lqiqsωsyn

uqs −Riqs = (Ldids + ψPM)ωsyn

R=0⇒
{
iqs= −uds/ (ωsynLq)
ids= (uqs − ωsynψPM) / (ωsynLd)

(203)

where it is often to assume R can be neglected as it is small enough as compared with
the reactance, such that a cleaner expression can be derived for dq-currents. Finally,
the apparent power S, active power P and reactive power Q can be calculated as
voltage times the conjugate of current:

S = P + jQ = (uds + juqs) (ids − jiqs) = (udsids + uqsiqs) + j (uqsids − udsiqs)

2.14.2. Power Angle

Define power angle δP as the angle between the q-axis and the terminal voltage vector
udqs

22

δP =
π

2
− ∠udqs =

π

2
− arctan

uqs
uds

(204)

We can rewrite the d-axis and q-axis voltages in terms of power angle as follows:

uqs = |udqs| cos δP

uds = |udqs| sin δP
(205)

22In two reaction theory, with the help of steady state phasor diagram, the power angle is derived by subtracting

the displacement power factor angle from the internal power factor angle.
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Note our derivation is always based on motoring convention, and the active power can
be calculated in terms of power angle δP as

P = udsids + uqsiqs

= uds (uqs − ωsynψPM) / (ωsynLd)− uqsuds/ (ωsynLq)

=

(
udsuqs
ωsynLd

− udsωsynψPM

ωsynLd

)
− uqsuds
ωsynLq

=

(
|udqs| sin δP |udqs| cos δP

ωsynLd
−
|udqs| sin δPωsynψPM

ωsynLd

)
−
|udqs| cos δP |udqs| sin δP

ωsynLq

= − |udqs| sin δP
ωsynψPM

ωsynLd
+
|udqs|2 sin 2δP

2

(
1

ωsynLd
− 1

ωsynLq

)
= ΩTem

(206)
where power angle δP has to be negative to keep a positive active power P , and in
other words, udqs should be leading to the back electromotive force ωsynjψdqs to make
P > 0.

This analysis in terms of power angle is only valid when we assume the excitation
is constant voltage and constant frequency, e.g., the grid, and note we have neglected
resistance such that R = 0.

2.14.3. Power Factor

In theoretical analysis, when we use the term of “power factor”, in most cases we mean
the displacement power factor, which is defined as the cosine of the angle between the
fundamental voltage and current, which is a straightforward idea because we assume
electrical variables are sinusoidal:

cosϕ = cos 〈udqs, idqs〉 =
P

|S|
=
ΩTem + |idqs|2R
|udqs| |idqs|

(207)

where the last equal sign is only valid when there is no rotor resistance and the
magnetic circuit is linear.

When the synchronous machine is loaded iq 6= 0, the power factor is not zero
even when id = 0, because some reactive power is inevitably consumed on the q-axis
reactance ωLq to maintain a nonzero iq. This can be shown in math language as follows
(note R = 0 has been assumed):

Q = uqsids − udsiqs = ωsynψPMids + ωsynLdi
2
ds + ωsynLqi

2
qs

Q|ids=0 = ωsynLqi
2
qs

(208)

This q-axis magnetic field is known as the q-axis armature reaction field. We can excite
a negative d-axis current to make power factor to be unity:

Q = 0⇒ Ldi
2
ds + ψPMids + Lqi

2
qs = 0

ids =
−b±

√
b2 − 4ac

2a
=
−ψPM ±

√
ψ2

PM − 4LdLqi2qs

2Ld

(209)

which will have a real solution for ids if ψPM is large enough and iqs is small enough.
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The true/distortion power factor that assumes a stiff voltage source, needs to further
take the total harmonic distortion of the current THDi into account to give:

PF =
cosϕ√

1 + THD2
i

THDi =

√∑∞
h=2 I

2
h

I1

(210)

where note Ih is the amplitude of the h-th order harmonic current.

2.14.4. Static Stability of the Synchronous Generator

In most analysis, the grid is assumed to be infinitely large such that the grid voltage
applied at the terminal of the synchronous generator is assumed to be invariant and
unchanged, which makes a perfect reference for phasor analysis. If we take the stator
voltage as the reference of the phasor diagram, the angle (with respect to the reference
phasor) of the armature current (the q-axis current) phasor is known as the power angle
δP :

δP = Θ +
π

2
− θudqs

When the synchronous motor is connected to the grid, it is most likely being used as
a generator, and its active power P versus power angle δP curve indicates its maximal
power before it losses its synchronism.

Θ +
π

2
= δP + θudqs

Ω =
d

dt
δP + ωudqs −

d

dt

π

2

JssΩ =
Pem (δP )− PL (δP )

Ω

Jss

(
d

dt
δP + ωudqs −

d

dt

π

2

)
=
Pem (δP )− PL (δP )

Ω

Jss

(
d

dt
δP + ωudqs

)
=
Pem (δP )− PL (δP )

Ω

Jss

(
d

dt
δP

)
=
Pem (δP )− PL (δP )

Ω

⇒ Jss (s∆δP ) =
∂Pem

∂δP
(∆δP )− ∂PL

∂δP
(∆δP )

Ω

Linearization⇒
[
JsΩs

2 −
(
∂Pem

∂δP
− ∂PL
∂δP

)]
∆δP = 0

⇒ s2 =
±1

JsΩ

√(
∂Pem

∂δP
− ∂PL
∂δP

)
⇒
(
∂Pem

∂δP
− ∂PL
∂δP

)
< 0
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2.14.5. Direct Starting of Synchronous Machine

The permanent magnet synchronous machine cannot be directly started from standstill
(i.e., Ω = 0) by connecting three phase winding to the grid that is at a fixed electrical
frequency of ωsyn/(2π) = 50 Hz.

2.15. Parameter Identification Through Impedance Measurement

There are various ways to measure the inductance of a permanent magnet motor,
depending on which equipment is used: the LCR meter or the inverter.

2.15.1. Impedance Measurement for Identification of DQ Inductances

Unfortunately, we do not know Ld and Lq and there is no way for a direct measurement.
In practice, impedance measurement at the terminals of a Wye-connected three phase
machine is feasible.

Let phase 1 to be open and apply the impedance probes to phase 2 and phase 3.
This is rewritten in math languages as follows

i1 = 0⇒

{
i2 = IZ

i3 = −IZ
(211)

In this case, the three phase flux linkages are ψ1

ψ2

ψ3

 = Labcsiabcs =

 0
(L2 − L23) iZ
(L32 − L3) iZ

 (212)

Pick a reasonable excitation frequency, e.g., fZ = 100 Hz such that iZ = IZ sin (2πfZt)
is an alternating sinusoidal current. Note IZ is so small, the motor will be at stand-
still even without a blocked rotor. The impedance meter will give you a read on the
inductance between terminal #2 and #3, which will equal to a linear combination of
the phase self- and mutual-inductances:

LZ1 =
ψ2 − ψ3

iZ
= (L2 − L23)− (L32 − L3) = L2 + L3 − 2L23 (213)

Here, we realize that we have never derived an expression for our phase self- and
mutual-inductances. It can be calculated using the original definition in terms of wind-
ing functions N1, N2, N3 (see (115) and (130)); or, we can apply Park transformation to
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Ldqns. The detailed derivation is shown in the footnote.23 The phase self-inductances
are

L1 = 2
3 [Lave + Ldiff cos (2nppΘ)] + 1

3Ln
L2 = 2

3

[
Lave + Ldiff cos

(
2nppΘ + 2

3π
)]

+ 1
3Ln

L3 = 2
3

[
Lave + Ldiff cos

(
2nppΘ + 4

3π
)]

+ 1
3Ln

(214)

and the phase mutual-inductances are

L12 = −1
2

2
3Lave + 2

3Ldiff cos
(
2nppΘ − 2

3π
)

+ 1
3Ln

L13 = −1
2

2
3Lave + 2

3Ldiff cos
(
2nppΘ + 2

3π
)

+ 1
3Ln

L23 = −1
2

2
3Lave + 2

3Ldiff cos (2nppΘ) + 1
3Ln

(215)

Now the measurement in (213) can be expressed in terms of Lave and Ldiff .

23The phase inductance matrix can be deduced using Park transformation as

Labcs = T−1LdqnsT = T (0)−1LαβγsT (0) =

√
2

3


1 0 1√

2

− 1
2

√
3

2
1√
2

− 1
2
−
√
3
2

1√
2


 Lα Lαβ 0

Lαβ Lβ 0
0 0 Ln

√2

3

 1 − 1
2

− 1
2

0
√
3

2
−
√
3

2
1√
2

1√
2

1√
2



=
2

3


Lα Lαβ

1√
2
Ln

− 1
2
Lα +

√
3

2
Lαβ − 1

2
Lαβ +

√
3

2
Lβ

1√
2
Ln

− 1
2
Lα −

√
3

2
Lαβ − 1

2
Lαβ −

√
3

2
Lβ

1√
2
Ln


 1 − 1

2
− 1

2

0
√
3
2

−
√
3

2
1√
2

1√
2

1√
2



=
2

3


Lα + 1

2
Ln − 1

2
Lα +

√
3

2
Lαβ + 1

2
Ln − 1

2
Lα −

√
3

2
Lαβ + 1

2
Ln

− 1
2
Lα +

√
3

2
Lαβ + 1

2
Ln − 1

2

(
− 1

2
Lα +

√
3
2
Lαβ

)
+
√
3
2

(
− 1

2
Lαβ +

√
3
2
Lβ

)
+ 1

2
Ln − 1

2

(
− 1

2
Lα +

√
3

2
Lαβ

)
−
√
3
2

(
− 1

2
Lαβ +

√
3

2
Lβ

)
+ 1

2
Ln

− 1
2
Lα −

√
3

2
Lαβ + 1

2
Ln − 1

2

(
− 1

2
Lα −

√
3
2
Lαβ

)
+
√
3
2

(
− 1

2
Lαβ −

√
3
2
Lβ

)
+ 1

2
Ln − 1

2

(
− 1

2
Lα −

√
3

2
Lαβ

)
−
√
3
2

(
− 1

2
Lαβ −

√
3

2
Lβ

)
+ 1

2
Ln


L1 =

2

3
Lα =

Ld + Lq

3
+
Ld − Lq

3
cos (2nppΘ) +

1

3
Ln

L2 =
2

3

[
−1

2

(
−1

2
Lα +

√
3

2
Lαβ

)
+

√
3

2

(
−1

2
Lαβ +

√
3

2
Lβ

)]
+

1

3
Ln

L3 =
2

3

[
−1

2

(
−1

2
Lα −

√
3

2
Lαβ

)
−
√

3

2

(
−1

2
Lαβ −

√
3

2
Lβ

)]
+

1

3
Ln

L3 −
1

3
Ln =

1

2

(
1

3
Lα + Lβ

)
+

√
3

3
Lαβ

=
1

2

(
1

3

Ld + Lq

2
+

1

3

Ld − Lq
2

cos (2nppΘ) +
Ld + Lq

2
− Ld − Lq

2
cos (2nppΘ)

)
+

√
3

3

Ld − Lq
2

sin (2nppΘ)

=
1

2

(
4

3

Ld + Lq

2
− 2

3

Ld − Lq
2

cos (2nppΘ)

)
+

√
3

3

Ld − Lq
2

sin (2nppΘ)

=
2

3

Ld + Lq

2
+

2

3

Ld − Lq
2

(
−1

2
cos (2nppΘ) +

√
3

2
sin (2nppΘ)

)

=
2

3

Ld + Lq

2
+

2

3

Ld − Lq
2

(
cos

(
−4

3
π

)
cos (2nppΘ) + sin

(
−4

3
π

)
sin (2nppΘ)

)
=

2

3

Ld + Lq

2
+

2

3

Ld − Lq
2

cos

(
2nppΘ +

4

3
π

)
(

2

3

)−1

L12 = −1

2
Lα +

√
3

2
Lαβ +

1

2
Ln = −1

2

Ld + Lq

2
− 1

2

Ld − Lq
2

cos (2nppΘ) +

√
3

2

Ld − Lq
2

sin (2nppΘ) +
1

2
Ln

= −1

2

Ld + Lq

2
+ cos

(
2

3
π

)
Ld − Lq

2
cos (2nppΘ) + sin

(
2

3
π

)
Ld − Lq

2
sin (2nppΘ) +

1

2
Ln

= −1

2

Ld + Lq

2
+
Ld − Lq

2
cos

(
2nppΘ −

2

3
π

)
+

1

2
Ln
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Repeat the impedance measurement for other two phases, we have the following
results:

LZ1 = 2 [Lave − Ldiff cos 2θ]

LZ2 = 2
[
Lave − Ldiff cos 2

(
θ − 2

3π
)]

LZ3 = 2
[
Lave − Ldiff cos 2

(
θ − 4

3π
)] (216)

where the electrical rotor angle has been used θ , nppΘ.
Now, if we slowly rotate the motor shaft such that cos 2θ = 1, we can have a

measurement of Lq, which is the maximum read for a permanent magnet motor.
And if we slowly rotate the motor shaft such that cos 2θ = −1, we can have a

measurement of Ld, which is the minimum read for a permanent magnet motor.
However, those measurement depending on manual rotation of the motor shaft is

not always reliable in practice owing to the cogging torque or large shaft inertia. It is
desired to have a measurement of Ld and Lq at standstill. To this end, we have the
following three equalities using the measurement results LZ1, LZ2, LZ3.

Equality 1 : LZ1
2 + LZ2

2 + LZ3
2 = 12Lave

2 + 6Ldiff
2 (217)

Equality 2 : LZ1LZ2 + LZ2LZ3 + LZ3LZ1 = 12Lave
2 − 3Ldiff

2 (218)

Equality 3 : LZ1 + LZ2 + LZ3 = 6Lave (219)

As a result, we have the following formula for measurement of Lq:

6Lq = LZ1 + LZ2 + LZ3 + 2

√
LZ1

2 + LZ2
2 + LZ3

2 − LZ1LZ2 − LZ2LZ3 − LZ3LZ1

= 6Lave + 2
√

12Lave
2 + 6Ldiff

2 −
[
12Lave

2 − 3Ldiff
2
]

= 6Lave + 2

√
9Ldiff

2

= 6Lave + 6 (±Ldiff)
(220)

Since we know Lq is larger than Ld for a PM motor, the undetermined sign in last row
can be easily determined.

Similarly, Ld can be measured as:

6Ld = LZ1 + LZ2 + LZ3 − 2

√
LZ1

2 + LZ2
2 + LZ3

2 − LZ1LZ2 − LZ2LZ3 − LZ3LZ1

(221)
As a side note, the above phase inductance matrix results are expressed in terms

of three parameters of Lave, Ldiff , Ln. If the phase inductance is derived directly us-
ing phase winding functions N1, N2, N3, a different set of parameters denoted by
Ls0,Ms0, Ls2 can be adopted:

1.5Ls0 = Lave + 0.5Ln

1.5Ls2 = Ldiff

3Ms0 = Ln − Lave

(222)
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where it is clear that the dq inductances are 1.5 times as large as the phase inductance
parameters. Those parameters are motivated to provide a clean definition of the phase
inductances as follows: 

L1 = Ls0 + Ls2 cos (2nppΘ)

L2 = Ls0 + Ls2 cos
(
2nppΘ + 2

3π
)

L3 = Ls0 + Ls2 cos
(
2nppΘ + 4

3π
)

L12 = Ms0 + Ls2 cos
(
2nppΘ − 2

3π
)

L13 = Ms0 + Ls2 cos
(
2nppΘ + 2

3π
)

L23 = Ms0 + Ls2 cos (2nppΘ)

from which the third parameter (the dc component of the phase mutual inductance)
can be derived as: Ms0 ,Mσ − 1

2 (Ls0−Lσ). The impedance measurement becomes:

LZ1 = 2 [Ls0 −Ms0 − 1.5Ls2 cos 2θ]

LZ2 = 2
[
Ls0 −Ms0 − 1.5Ls2 cos 2

(
θ − 2

3π
)]

LZ3 = 2
[
Ls0 −Ms0 − 1.5Ls2 cos 2

(
θ − 4

3π
)] (223)

and dq inductances become:

Ld = Lave + Ldiff = (Ls0 −Ms0) + 1.5Ls2

Lq = Lave − Ldiff = (Ls0 −Ms0)− 1.5Ls2
(224)

where it is worth mentioning for PM motor we have Ls2 < 0 (recall g2 < 0).

2.16. Winding Theory for AC Machine

We have been using the coefficient of Fourier analysis, e.g., N(1) to denote the winding
function’s amplitude. Those coefficients can be calculated using star of slots.

2.16.1. Statement of the Objective

Consider an m-phase stator winding that is going to fit into a Qs slot stator iron core,
and we are expecting it to generate a npp-pole-pair magnetomotive force as follows:

F(1,1) (α, t) =
m

2
N(1)I(1) cos (α− ωsynt)

where the electrical angular location in the air gap is α = nppαmech with αmech the
mechanical angular location in the air gap.

Now assume there are zQ conductors in each stator slot, and the induced electromo-
tive force shares the same amplitude but has different phase angle. The shift in phase
angle with respect to a reference conductor (let’s say, conductor i) depends on the
conductor’s angular location (let’s say, i + y). In particular, the phase shift between
two adjacent slots (i.e., the case of y = 1) is called as slot angle that is calculated as
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follows24

αslot = h2π/Qs (225)

where h is an arbitrary harmonic order number, which could be equal to npp or not.
In the following, we are going to iterate h from 1 to a large enough integer to validate
the stator wining’s capability to induce electromotive force (or equivalently, generate
magnetomotive force) that is h pole pairs.

TODO: How do you prove (225)? The frequency of the electromotive force is much
higher when it is induced by the harmonic field that has higher pole pair number than
the fundamental. The fundamental field and harmonic field has the same mechanical
speed.

2.16.2. Complex Number Pitch Factor

 

Figure 16. Deriving the complex number pitch factor for the coil whose two sides are respectively placed at

slot i and slot i+ y, i.e., it spans y slots. This figure is a phasor plot because all the arrows are not rotating or

you can say the time elapse is irrelevant in this plot, and only the relative location of the arrows matter.

Each coil has two coil sides, and the two coil sides cannot be placed in the same slot,
otherwise this coil is useless. Consider that one of the coil side is placed in slot i and
the other slot i + y. We can draw the electromotive force induced in the conductors
in these two slots in the DQ plane, but the time elapse does not really matter to us
when we are analyzing the capability of a winding. Therefore, we can draw the arrow
at any time we like, and we would like to let the arrow indicating the location of the
conductor, as is done in Fig. 16, where the electromotive force phasor of conductor
in slot i is located at α = iαslot. In Fig. 16, the symbol ēslot,i denotes a complex
number electromotive force phasor of the conductors at slot i. For convenience, we are
assuming ēslot,i has a modulus of unity. Symbol ēcoil,i stands for the complex number
electromotive force phasor sum of a coil whose coil sides locates in slot i and slot
i + y. When doing the phasor sum, please note a simple fact that the two coil sides
are connected in reverse series. As a result, the complex number pitch factor of a coil

24Imagine there is a harmonic rich field in the air gap moving and the electromotive force’s phase difference
between the two slots due to different harmonic that moves at the same mechanical speed is h times mechanical

slot angle 2π/Qs.
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that spans slot i and slot i+ y is:

k̄p,i(h) = cos

(
π − yαslot

2

)
ej(iαslot−π−yαslot

2 )

⇒ k̄p,i(h) = sin

(
yhπ

Qs

)
exp

{
j

[
hπ

Qs
(2i+ y)− π

2

]} (226)

which is a phasor and has a modulus that is less or equal than 1. The pitch factor
shows that a short pitched (y < Qs

2 ) or long pitched (y > Qs
2 ) coil always induces less

electromotive force (or generates magnetomotive force) than a full pitched coil with

y = Qs
2 .

Note the pitch factor depends only on winding parameters: coil pitch in slot count
y and stator slot number Qs.

2.16.3. Complex Number Winding Factor

Each phase of winding consists of a group of coils that occupy 1/m-th of the Qs slots.
In other words, one phase means one coil group. If we take the sum of complex number
pitch factors of all coils in the same group, we get the complex number winding factor
as follows:

k̄w,U (h) =
1

NU

∑
i∈U

k̄p,i (h)

, kw,U (h)∠αw,U (h)

(227)

where U is the set of coil indices belonging to phase U, and NU is the number of coils
of phase U.
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2.16.4. Star of Slots Plot

Figure 17. Example star of slots plot for Qs = 24 and npp = 1. In literature, p is often used to denote npp.

Phase U coil set is U = {i ∈ N|1, 2, 3, 24,−12, 13, 14, 15}

We need to figure out a way to assign coils to phase. To this end, let’s draw all
upper coil side phasor of a coil in the same phasor plot, neglecting the lower coil side
phasor (meaning that the pitch factor is not considered yet). Such a phasor plot is
known as star of slots plot.

Using the open-sourced script25, we can easily draw star of slots for any winding.
For example, for a Qs = 24, npp = 1 three phase winding, we have the results shown
in Fig. 17.

Figure 18. Star of slots plot for Qs = 24 and npp = 4.

The same stator iron core with Qs = 24 slots can be used to generate a npp = 4
pole-pair magnetic field, as shown in Fig. 18. Unlike the previous example, now the
star phasors repeat t = 4 times with t = GCD(Qs, npp).26 This implies that the trick,
for this particular winding, used to generate a four pole pair field is to repeat a one
pole pair field four times per mechanical revolution. along the air gap.

25https://github.com/horychen/ACMOP/blob/better_framework/codes3/winding_layout_
derivation_ismb2021_asymetry.py#L929
26GCD stands for greatest common divisor. By the way, the GCD of any two integers can be found by Euclid’s

algorithm as exemplified in the screenshot below in which Euclid algorithm is used to find the GCD(32769,

77). Credit: @Veritasium.

 https://github.com/horychen/ACMOP/blob/better_framework/codes3/winding_layout_derivation_ismb2021_asymetry.py#L929
 https://github.com/horychen/ACMOP/blob/better_framework/codes3/winding_layout_derivation_ismb2021_asymetry.py#L929
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In the above two examples, the “2π/m/2 phase band” has been adopted to pursue a
larger phasor sum per phase than the less used “2π/m phase band”. For a three phase
winding, the grey area in Figs. 17 and 18 spans 60 degrees and we need to connect
the coils in the white are in reverse to the coils in grey area. In order to indicate the
connecting direction of the coils, we can draw a connection star based off the star of
slots plot, as shown in Figs. 17 and 18. From the connection star, we can define the
set U for coil group U , and calculate the winding factor using (227).
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2.16.5. Phase Magnetomotive Force

Figure 19. Phase turn function for Qs = 24 and npp = 1 winding using a short coil pitch y = 9.

Figure 20. Phase turn function for Qs = 24 and npp = 4 winding using a full coil pitch y = 3.

With the coil group U available, we need to further specify the coil pitch y to finish
the winding design and we can draw turn function, as shown in Figs 19 and 20.

The coefficients of Fourier analysis of the corresponding winding functions can be
calculated using the winding factors (227), see Figs 21a and 21b.
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(a) npp = 1, and y = 9 (b) npp = 4 and y = 3

Figure 21. Winding factor modulus kw(h) (of any phase, since the winding is symmetric). Qs = 24. A

consequence of using a 2π/m/2 phase band (such that for any coil there is a same coil placed 180 electrical

degrees) is that there is no h = 2npp harmonic field.
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2.16.6. Winding Layout

(a) Qs = 24, npp = 1, and y = 9.

(b) Qs = 24, npp = 4 and y = 3

Figure 22. Winding layout for phase U.

The winding layout or diagram is required by the electric machine manufacturer. In
particular, machine designer needs to specify the terminals of the winding, see Figs 22a
and 22b. For a coil group consists of a coils, we can choose to connect all a coils in
parallel. For example, in Figs 22a and 22b, if we connect the ua coil group and ub coil
group in parallel, the number of parallel branch is equal to a = 2.

As can be seen in the layout plot, a winding with large y value tends to have more
“overlap” in the end winding region, such that the axial length of the winding is
increased. One benefit to use y = 1 winding (a.k.a., coil wound winding) is to save
axial length space in end winding region.
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3. Chapter 3: Nonlinear Control for Electric Machine

We now have the model, winning us a ticket entering the world of model based control.

3.1. Motor Control: a Perspective (Part I)

There is a survey paper by Åström and Kumar (2014) published in Automatica [14],
in which various control techniques developed for different models and environments
are reviewed. I have heard multiple times complains about how the control theory has
been developed disconnected from control target in real life. Fortunately, we have a
real control target with its grey box model already available, and that’s what makes
engineer a satisfactory job.

Before we really work on motor control problem, it is high time to learn some
professional keywords or ideas used in control theory. As a notation convention, we
are going to use the time derivative operator s = d

dt .
27

3.1.1. Regulator Problem

Design a control law for the control input Tem to regulate the state Ω, whose undis-
turbed dynamics are

sΩ =
1

Js
(Tem − 0) (228)

towards a constant command or reference signal Ω∗ = Const.
If you have no clue what to do with a control problem, it is often a good idea to

write down its control error dynamics:

seΩ = s (Ω −Ω∗) =
1

Js
(Tem)− sΩ∗ =

1

Js
(Tem)− 0 = −KP eΩ (229)

which motivates us to use a simple feedback control law

Tem = −JsKP eΩ (230)

with a proportional gain KP > 0, such that the closed loop controlled system stays
linear.

To predict how the error eΩ evolves, recall basics in solving an ODE (that is, we
need find an analytical function whose derivative is proportional to itself) and its
analytical solution is:

eΩ(t) = eΩ(0) exp(−KP t) (231)

which means the control error exponentially converges to null. The convergence rate
of eΩ(t) [see (231)] or the pole of the linear system (229) (which is −KP ) can be
arbitrarily set if a continuous control system is implemented, provided Js is perfectly
known (otherwise the pole location has uncertainty due to the mismatched inertia
parameter used).

27Note this is not Laplace operator. If you wonder what is a Laplace operator, search this PDF document to
find out.



EE275 Spring’23 77 Chen, Jiahao

3.1.2. Lyapunov Stability and Lyapunov Function

Generally speaking, we should not expect an analytical solution can be derived and
we do not really need it anyhow.

Our truly desired property is the closed loop system having property of “error
modulus converging to zero”, which is closely related to the core concept in control
theory, the stability. For a linear system, its stability is evaluated by inspecting the
negativity of the real parts of the poles. For nonlinear system, however, the negativity
of the changing rate of an auxiliary energy function is evaluated to see if the system
is stable in the sense of Lyapunov.

As an example, define an energy function V = 1
2e

2
Ω for (229), and its time derivative

along the error dynamics (229) is as follows

sV = eΩseΩ = −KP e
2
Ω (232)

which is negative everywhere except at eΩ = 0, meaning that V ≥ 0 is always decreas-
ing until eΩ = 0. Such a system is said to be asymptotically stable and its function V
is called Lyapunov function.28

3.1.3. Constant Disturbance Problem and Input-to-State Stability

Further consider the disturbed dynamics

sΩ =
1

Js
(Tem − TL) (233)

and derive a new control law Tem to have asymptotically stable control error eΩ re-
gardless of the unknown disturbance TL = Const.

The control error dynamics using the old control law (230) become

seΩ = −KP eΩ −
TL
Js

(234)

and we have

sV = eΩseΩ = −KP e
2
Ω − eΩ

TL
Js

≤ −KP e
2
Ω + |eΩ|

∣∣∣∣TLJs
∣∣∣∣

≤ −KP e
2
Ω +

%

2
|eΩ|2 +

1

2%

∣∣∣∣TLJs
∣∣∣∣2

(235)

28A formal proof of the asymptotical stability needs to refer to Barbalat’s Lemma [15].
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where the following basic inequality has been used29

%

2
|eΩ|2 +

1

2%

∣∣∣∣TLJs
∣∣∣∣2 ≥ 2

√
%

2
|eΩ|2

√
1

2%

∣∣∣∣TLJs
∣∣∣∣2 = |eΩ|

∣∣∣∣TLJs
∣∣∣∣ (236)

We choose a positive constant % < 2KP so the positive definiteness of %
2 |eΩ|

2 is “weak
enough” to not cancel the negative definiteness of −KP e

2
Ω.

Owing to the existence of the unknown disturbance TL, now sV is negative only
when the “error energy” e2

Ω is large enough such that

e2
Ω >

1(
KP − %

2

) 1

2%

∣∣∣∣TLJs
∣∣∣∣2 (237)

which leads to an estimate of the converging region for the control error eΩ in the sense
of Lyapunov. In other words, the error would still converge outside the “1D circle”
that has a radius of ∣∣∣∣TLJs

∣∣∣∣ /√2%
(
KP −

%

2

)
(238)

which, however, is larger than the actual radius at which the control error stops to
converge. To see this, one can show directly from (234) that the steady state error is

|eΩ(∞)| =
∣∣∣∣TLJs

∣∣∣∣ /KP (239)

Both radii in (238) and (239) can be set arbitrarily small if we use arbitrarily large
proportional gain KP , provided a continuous control system is implemented. We call
the region beyond the radii the converging region, and apparently, the converging
region predicted by the Lyapunov stability is much smaller. This example shows the
conservative nature of the Lyapunov stability based analysis.

This steady-state result shows that the disturbed control error state is still sta-
ble under unknown disturbance, we may say the dynamics have “disturbance-to-state
stability”. Note for this particular example, TL and Tem have the same entry in the
dynamics (??), that is, they both “accelerate” the rotor shaft, so one may argue it is
unfair to call TL a disturbance rather than an unknown input. If we view the distur-
bance TL as an input, disturbance-to-state stability becomes input-to-state stability
(ISS) [15].

3.1.4. Constant Disturbance Problem and Adaptive Control

Writing out the error dynamics (234) does not gives us useful information. However,
according to (239), the existence of the disturbance TL does causes steady state control

29There are plenty of proofs. A simple one is

a =
a+ b

2
+
a− b

2
> 0; b =

a+ b

2
− a− b

2
> 0

⇒ ab =

(
a+ b

2
+
a− b

2

)(
a+ b

2
− a− b

2

)
=

(
a+ b

2

)2

−
(
a− b

2

)2

≤
(
a+ b

2

)2
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error eΩ(t)|t=∞ that is nonzero as long as TL is unknown. In turn, we can use this
information to produce an estimate of the unknown load torque TL by integrating the
control error over time:

sT̂L =
γTL
Js

eΩ (240)

which is known as the adaptation law and is a quite straightforward idea that we
update the load torque estimate as long as the speed control error exists.

Now that we got an estimate of the load torque, we shall update the old control law
as follows:

Tem = −JsKP eΩ + T̂L (241)

which gives new error dynamics as follows

seΩ = −KP eΩ −
T̃L
Js

where T̃L , TL − T̂L.
To prove the stability of the adaptive control system with the extended error state

T̃L, we shall choose a new quadratic energy function:

V =
1

2
e2
Ω +

1

2γTL
T̃ 2
L

⇒ sV = −KP e
2
Ω − eΩ

T̃L
Js

+
1

γTL
T̃LsT̃L

⇒

{
sV = −KP e

2
Ω

−eΩ T̃L
Js

+ 1
γTL

T̃LsT̃L = 0

⇒ sT̃L = sTL − sT̂L = −γTL
Js

eΩ

(242)

where note the adaptation law (240) has been derived; and sV = −KP e
2
Ω states that

the positive definite function V is going to decrease everywhere except eΩ is zero.
Using Barbalat’s Lemma [15], we can shows that as eΩ → 0 as t→∞.

An important fact is that there is no conclusion made for the convergence of T̃L. In
fact, the adaptation rule (240) is designed only to make eΩ converge to zero. To show
the convergence of the load torque estimated error T̃L, consider an auxiliary function
W that is proportional to the derivative of T̃ 2

L :

W =
1

2
sT̃ 2

L = T̃L

(
−γTL
Js

eΩ

)
⇒ sW =

(
sT̃L

)(
−γTL
Js

eΩ

)
+ T̃L

(
−γTL
Js

seΩ

)
=
(
sT̃L

)(
−γTL
Js

eΩ

)
+ T̃L

γTL
Js

(
KP eΩ +

T̃L
Js

)

=

(
γTL
Js

eΩ

)2

+
(

γTL
Js
KP eΩT̃L + γTL

J2
s
T̃ 2
L

)
(243)
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which shows that the error T̃L is asymptotically stable according to the Matrosov’s
theorem [15]. Roughly speaking, when eΩ has converged to zero such that W = 0,
meaning the energy of the estimated load torque error, 1

2 T̃
2
L, is not changing. Let’s

assume T̃L 6= 0, so we have a positive time derivative sW = γTL
J2
s
T̃ 2
L, which is the second

derivative of 1
2 T̃

2
L and means that the changing rate of the load torque error energy T̃ 2

L
is increasing. This violates the fact that V is not changing (because sV = −KP e

2
Ω = 0).

Therefore, T̃L must be null and this proves the asymptotical stability of T̃L.
The condition to keep sW > 0 when T̃L 6= 0 is called persistency of excitation

(PE) condition. In this simple example, sW is always positive when T̃L 6= 0 so the PE
condition always holds.

3.1.5. The Proportional Integral (PI) Regulator

The above adaptive control is also known as PI regulator. To see this, let’s rewrite the
adaptive control law:

Tem = −JsKP eΩ −
(
−T̂L

)
s
(
−T̂L

)
=
γTL
Js

eΩ

⇒ Tem = −
(
JsKP +

1

s

γTL
Js

)
eΩ =

(
PΩ +

IΩ
s

)
(Ω∗ −Ω)

(244)

where PΩ and IΩ are two trial-and-error-tuning buttons that are widely commended
for not needing to know model parameters.

3.1.6. The Proportional Integral Derivative (PID) Control:
Control Target having Relative Degree of 2

There are different situations in which a PID regulator is needed. We are only con-
sidering one relevant example of using PID regulator to control a target with relative
degree of 2 here, but keep in mind this is not the only use case of PID regulator.

Let’s change our control objective to control the rotor angle Θ to follow a smooth30

command Θ∗:

sΘ = Ω

sΩ =
1

Js
(Tem − TL)

(245)

Now we need to be clear that rotor angle is the output of the system that can be
measured and the system (245) has a relative degree of 2, as we need to differentiate
the output twice to get input Tem.31 Let

1

Js
Tem = −KP (Θ −Θ∗)−KD (sΘ − sΘ∗) + s2Θ∗ +

1

Js

(
−T̂L

)
30Smooth means the existence of time derivative.
31See Lecture 19, EE222 2016, UC Berkeley.
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and we have a second order rotor angle control error system as follows32

s2Θ = sΩ = −KP (Θ −Θ∗)−KD (sΘ − sΘ∗) + s2Θ∗ +
(
−T̂L

)
+ (−TL)

⇒ s2eΘ +KDseΘ +KP eΘ +KIs
−1eΘ = 0

(246)

where eΘ , Θ−Θ∗ and the adaptive control law −T̂L = −KI
1
s (Θ −Θ∗) is motivated

by the previous adaptive control example. Apparently, the introduction of the integral
control increases or extends the system order by one.

3.1.7. Two Degrees-of-Freedom Control

There are two problems about the adaptation law for load torque (240). First, the drive
force for adaptation is the control error and it is potentially confused with “initial”
regulating error. Second, the load torque disturbance has to be a dc signal or a slow-
varying signal.

When there exists a sudden nonzero control error, it could be due to either sudden
command change or sudden disturbance. It is desired to separate the two control
objectives of command tracking and disturbance rejection, and a control method that
achieve two objectives at the same time is called two degrees-of-freedom control.

The principle is rather simple: “don’t change the command suddenly”. That’s it.
As a result, if there is a sudden control error change, it is due to disturbance.

3.1.8. Command Tracking

Tracking implies the command is time-varying. There are two basic ideas to have time-
varying command that does not sudden change: make sure the command is smooth
[e.g., Ω∗(t) ∈ C2], or use a low pass filter to filter your step command. There are
alternative topologies (playing with the control blocks) but the basic idea is nothing
more than: “don’t change the command suddenly”.

3.1.9. Faster Disturbance Rejection

Let’s now assume the load torque is changing really fast such that we need to literally
solve for TL instantaneously to estimate it:

− TL = JssΩ − Tem

⇒ −T̂L = Q (s) (JssΩ − Tem)

⇒ −T̂L =
ωc

s+ ωc
(JssΩ − Tem)

(247)

where a low pass filter Q(s) is added to avoid taking pure differentiation of rotor
angular speed. This is knows as a disturbance observer. The cut-off angular speed ωc
is tuned to adjust the disturbance observer’s bandwidth.

3.1.10. Multi-variable Control and Decoupling Control

When there are two states appearing in each other’s dynamics...

32For more information about characteristics of second order system, refer to classic control theory textbook,
e.g., Modern Control Engineering (2010) by Katsuhiko Ogata.
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3.1.11. Input Output Linearizing Problem

The objective of the control design is to track both the speed command and the flux
amplitude command.

The main trick here is to use state as the control input. In fact, such a trick has
been used when we are deriving the PID control law in (246), where the derivative
control is meant to use the state Ω as the control input to rotor angle dynamics sΘ.

3.1.12. Insight from this Course

By learning through this course, students are going to grasp an understanding to the
following three statements:

• The integral control is a dynamic control. Dynamic means there is a state intro-
duced in the input variable.
• The derivative control is trick to use state as control input.
• The proportional control is a straightforward idea to use control input to modify

the control error’s dynamics.

3.2. Field Orientation for AC Motors

The motivation for field orientation is a rather simple idea. The electrical engineers
want to have a torque expression for AC motors that is as simple as that of a brushed
DC motor33

Tem = nppψAiTs (248)

where ψA is the amplitude of the active flux (linkage) and iTs is the torque producing
stator current.

3.2.1. Field Orientation as Aligning d-Axis to a Space Vector

 

Figure 23. Choices for putting the dq-frame. From left to right: arbitrary θd, θd = 0, θd = θψs.

As shown in Fig. 23, we have three different choices for putting the dq-frame. It
should be emphasized that these three cases are describing exactly the same stator
flux linkage space vector that exists in the DQ plane and the only difference is how we

put the reference frame. Apparently, the q̂FO-component of the stator flux linkage is
exactly 0. Since the flux linkage space vector corresponds to the magnetic field that
exists in the air gap, we call the alignment to a flux linkage space vector as the field

33For DC motors, this expression is possible because of a physical component called carbon brush that supplies

electricity to the rotor armature. The existence of carbon brush limits power rating. For AC motors, such a
brush is not needed for armature so AC motors/generators can be made up to a higher power ratings.
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orientation (FO). The field oriented frame subscript like dFO is lengthy, thus we shall
take advantage of the arbitrariness of the dq-frame to use d instead of dFO in the
sequel. Now, we are ready to see if our previously derived DQ models fit (248) or not.

3.2.2. PM Motor: Attempt 1—Stator FO

Let’s rewrite the torque expression (174) for an AC machine in rotor oriented dq
reference frame:

Tem = npp

(
Jψdqs

)T
idqs = npp (−ψqsids + ψdsiqs)

If we decide to use iqs as the torque-producing current, we need to choose a field
orientation such that the q-axis component of stator flux ψqs ≡ 0. The stator flux vector
is not aligned with the rotor field winding (recall the angular position of the rotor field
winding defines the rotor angle variable Θ). If we change the rotor orientation to field
orientation, the mutual inductance between d-axis and q-axis would be non-zero, i.e.,
Ldq 6= 0, resulting in complicated DQ model. In conclusion, stator field orientation is
no good for PM motor that has saliency, i.e., g2 6= 0.

3.2.3. PM Motor: Attempt 2—Rotor FO

For PM motor with saliency, the orientation of the d-axis is not at our disposal, and
therefore, we cannot align the d-axis location to stator flux linkage space vector. Let’s
get rid of stator flux linkage then.

Consider the PM motor model in rotor oriented dq reference frame:

θd = nppΘ

ψdqs =

[
Ld 0
0 Lq

]
idqs +

[
ψPM

0

]
udqs −Ridqs = J

dθd
dt
ψdqs +

d

dt
ψdqs

Tem = npp [(Ldids + ψPM) iqs − Lqiqsids] = nppψPMiqs + npp (Ld − Lq) idsiqs

where we have substituted the stator flux linkage expression in the torque expression.
Apparently, if we define an active flux amplitude

ψA = ψPM + (Ld − Lq) ids

we then have

Tem = nppψAiqs

In this case, the q-axis stator current iqs is the torque-producing current iTs. The
unusual property about the new flux variable ψA is that it is a scalar rather than a
R2 vector. The underlying relation between the new flux variable and the old stator
flux variable is:

ψdqA =

[
ψdA

ψqA

]
=

[
ψA

0

]
= ψdqs − Lqidqs (249)
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from which we realize that there is no necessity to introduce the R2 vector and its dq
components, and we can eliminate stator flux linkage using ψA and currents, yielding
the following new stator voltage equations

sψA + Lqsids = uds −Rids + ωdLqiqs

ωdψA + Lqsiqs = uqs −Riqs − ωdLqids
(250)

with ωd = sθd = nppsΘ. Note how parameter Ld has disappeared from the model.
This result implies that the two reaction theory from chapter 2 is not needed if we
introduce a change state variable for flux linkage.

An hidden yet interesting fact is that the active flux vector ψdqA is aligned with
the rotor PM magnetic field in the DQ plane, because their q-axis components in the
field oriented frame are both zero, or in math terms they satisfy:

ψdqA =

[
ψA

0

]
‖ ψdqPM =

[
ψPM

0

]
Therefore, the original rotor oriented frame for PM motor is in fact a rotor field
oriented frame.

3.2.4. Induction Motor: Attempt 1—Stator FO

Since there is no rotor saliency for induction motor, the freedom of definition of dq-
frame is now ours. In other words, the d-axis can be arbitrarily placed anywhere in the
air gap and therefore, the stator flux orientation seems feasible. That is, let ψqs ≡ 0,
such that Tem = npp (0 + ψdsiqs). Consequently, the stator voltage equation becomes

udqs −Ridqs = J
dθd
dt
ψdqs +

d

dt
ψdqs

⇒

{
uds −Rids = 0 + sψds

uqs −Riqs = ωdψds + 0

from which we learn that uds can be used to control ψds, but the control input for
the torque producing current iqs seems not clear. In fact, a dynamic control can be
adopted to control the dynamics of iqs, such that uqs = ωdψds + Rs−1vq, with vq as
the new control input for the q-axis subsystem.

The stator field orientation defines a d-axis angle as follows

cos θd =
ψαs√

ψ2
αs + ψ2

βs

sin θd =
ψβs√

ψ2
αs + ψ2

βs

from which one can verify that we have

ψdqs =

[
ψds
ψqs

]
=

[ ∣∣ψαβs∣∣
0

]
=

[
cos θd sin θd
− sin θd cos θd

] [
ψαs
ψβs

]
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TODO: add figure of torque slip curve here.

3.2.5. Induction Motor: Attempt 2—Rotor FO

Motivated by success of not using stator flux linkage for PM motors, consider an
induction motor using inverse Γ circuit parametrization represented in a dq reference
frame that uses an orientation such that the q-axis component of the rotor flux linkage
is null, i.e., ψqµ ≡ 0:

ψdqs = (Ls − Lµ) idqs +ψdqµ

ψdqµ = Lµ (idqs + idqreq)⇒

{
ψdµ = Lµ (ids + idreq)

ψqµ = Lµ (ids + iqreq) = 0⇒ ids = −iqreq

udqs −Ridqs = J
dθd
dt
ψdqs +

d

dt
ψdqs

0−Rreqidqreq = J
d (θd − nppΘ)

dt
ψdqµ +

d

dt
ψdqµ ⇒

{
−Rreqidreq = − (ωd − nppΩ)ψqµ + d

dtψdµ

−Rreqiqreq = (ωd − nppΩ)ψdµ + d
dtψqµ

From the q-axis rotor voltage equation, the choice of rotor field orientation leads to a
constraint for slip angular speed ωsl:

ψqµ = 0

⇒ −Rreqiqreq = (ωd − nppΩ)ψdµ + 0

⇒ nppΩ −
Rreqiqreq

ψdµ
= ωd =

d

dt
θd

⇒ nppΩ +
Rreqiqs
ψdµ

= ωd =
d

dt
θd

⇒ ωsl =
Rreqiqs
ψdµ

= ωd − nppΩ = ωsyn − nppΩ (251)

where it has assumed that the angular speed of the rotor field orientated frame ωd is
equal to synchronous angular speed ωsyn of current excitation. If you feel uncomfortable
about this assumption, keep it in mind, as we will come back to this assumption later.34

The torque expression becomes

Tem = nppJψdqs · idqs = npp (−ψqsids + ψdsiqs)

= nppJψdqµ · idqs = npp (−ψqµids + ψdµiqs)

⇒ Tem = npp (−ψqµids + ψdµiqs) = nppψdµiqs = nppψdµ
ψdµωsl

Rreq
= nppψ

2
dµ

ωsyn

Rreq
S

⇒ Tem = nppψAiqs

in which we have defined the active flux amplitude ψA = ψdµ for induction motor.

34As a side note, the speed of the R2 vector ψdqµ can be calculated by

ωd = sθd = Im

[
sψdqµ

ψdqµ

]

where note there is no such thing as vector division, so the R2 vector is interpreted as a complex number as is

done chapter 2.
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Note the rotor field orientation gives linear mechanical characteristics, a.k.a. torque-
slip curve.

3.2.6. Brief Summary: The Rotor Field Oriented Modeling for AC Motors

In order to derive a unified model for two distinct types of AC machines, we need to
choose to use the rotor field orientation, as the stator field orientation for PM motor
leads to a model with Ldq 6= 0. Note the rotor oriented frame for PM synchronous
motor is in fact also a rotor field oriented frame because the rotor field winding defines
the rotor angle Θ.

In summary, the induction motor has a fifth order model as follows:

d

dt
θd =

d

dt
θψµ = nppΩ +

Rreqiqs
ψdµ

(252a)

sΩ =
1

Js
(Tem − TL) =

1

Js
(nppψdµiqs − TL) (252b)

d

dt
ψdµ = −Rreqidreq = −Rreq

(
L−1
µ ψdµ − ids

)
(252c)

udqs −Ridqs = J
dθd
dt

[
(Ls − Lµ) idqs +ψdqµ

]
+

d

dt

[
(Ls − Lµ) idqs +ψdqµ

]
(252d)

where the field orientation is defined using the inverse Γ circuit rotor flux linkage
vector such that

cos θd =
ψαµ√

ψ2
αµ + ψ2

βµ

sin θd =
ψβµ√

ψ2
αµ + ψ2

βµ

The name “inverse Γ circuit rotor flux linkage vector” is too long, and we are going
to call it “active flux vector” for short: ψA = ψdµ.

The PM synchronous motor has a fourth order model as follows:

d

dt
θd = npp

d

dt
Θ = nppΩ

sΩ =
1

Js
(Tem − TL) =

1

Js
[nppψAiqs − TL]

ψA = ψPM + (Ld − Lq) ids

udqs −Ridqs = J
dθd
dt

([
Ldids + ψPM

Lqiqs

])
+

d

dt

([
Ld 0
0 Lq

]
idqs

) (253)

It needs to be emphasized that the two types of machines, given their distinct
natures (e.g., different armature excitations), end up with the same field orientation
choice, the rotor field orientation, in order to reach a unified torque expression using
active flux as follows:

Tem = nppψAiqs
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Apparently, the model for induction motor is “nastier” than that of PM motor
because there are dynamics for the active flux, i.e., sψA. Therefore, we shall take
induction motor model for controller design in the sequel, and of course the controller
design also applies to the simpler PM motor.

3.3. Direct Rotor Field Oriented Control

Assume that the rotor flux ψdqµ is known such that the following cosine and sine
values become available

cos θd =
ψαµ√

ψ2
αµ + ψ2

βµ

sin θd =
ψβµ√

ψ2
αµ + ψ2

βµ

The direct rotor field oriented control (DRFOC) is easily achieved by first converting
the measured currents iαβγs = T (0)[i1, i2, i3]T into FO dq-frame:[

ids
iqs

]
=

[
cos θd sin θd
− sin θd cos θd

] [
iαs
iβs

]
(254)

and then design two independent controllers for the two linear systems that have
relative degree of two:

Active Flux
Subsystem

{
sψdµ = −Rreqidreq = −Rreq

(
L−1
µ ψdµ − ids

)
(Ls − Lµ) sids + sψdµ = uds −Rids + ωd [(Ls − Lµ) iqs + ψqµ]

(255)

Rotor Speed
Subsystem

{
JssΩ = nppψdµiqs − TL
(Ls − Lµ) siqs + 0 = uqs −Riqs − ωd [(Ls − Lµ) ids + ψdµ]

(256)

where the system input is voltages uds, uqs and the system output is active flux am-
plitude ψdµ and rotor angular speed Ω.

We haven’t derived any control law for the voltage input, but we have already
covered the essentials of the field oriented control—the Park transformation to a field
oriented reference frame and that’s it. This field oriented frame has almost decouples
the ac motors into two subsystems.

Note how the output of the active flux subsystem, which is ψdµ, appears in the
rotor angular speed subsystem. Therefore, if we really go with the topology of using
two independent controllers, it is recommended that we need to first build up a
magnetic field before we can control the rotor speed through the ideal linear mechanical
characteristics. From the perspective of control, the flux control error ψdµ − ψ∗dµ is a
disturbance to the rotor speed subsystem:

JssΩ = nppψ
∗
dµiqs − TL + npp

(
ψdµ − ψ∗dµ

)
iqs

We will also use the symbol ψ∗ ∈ R+ to designate the active flux amplitude command.
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3.3.1. Active Flux Subsystem

The error dynamics for active flux subsystem to track command ψ∗ are

s (ψdµ − ψ∗) = Rreqids −RreqL
−1
µ ψdµ − sψ∗ (257)

Since the voltage input uds is not seen yet, further differentiating the dynamics yields

s2 (ψdµ − ψ∗) = Rreqsids −RreqL
−1
µ sψdµ − s2ψ∗ =

Rreq

(Ls − Lµ)
uds + Γψ − s2ψ∗ (258)

where the disturbance is

Γψ =
Rreq

(Ls − Lµ)

(
−Rids + ωd [(Ls − Lµ) iqs + ψqµ] +Rreq

(
L−1
µ ψdµ − ids

))
−RreqL

−1
µ sψdµ

(259)
which consists of known signals thus can be compensated using feedforward control:

Rreq

(Ls − Lµ)
uds = −Γψ + s2ψ∗ + vd

with the design term vd being used to modify the error dynamics into a standard
second order system using PD control:

vd = −KP (ψdµ − ψ∗)−KDs (ψdµ − ψ∗)

3.3.2. Rotor Speed Subsystem

The error dynamics for rotor speed subsystem to track command Ω∗ are

Jss (Ω −Ω∗) = nppψ
∗
dµiqs − TL + npp

(
ψdµ − ψ∗dµ

)
iqs − JssΩ∗ (260)

Since the voltage input uqs is not yet seen, further differentiating the dynamics yields

Jss
2 (Ω −Ω∗) = nppψ

∗
dµsiqs + npp

(
sψ∗dµ

)
iqs − sTL + s

[
npp

(
ψdµ − ψ∗dµ

)
iqs
]
− Jss2Ω∗

=
nppψ

∗
dµ

(Ls − Lµ)
uqs + ΓΩ − Jss2Ω∗ + s

[
npp

(
ψdµ − ψ∗dµ

)
iqs
]

(261)
where the disturbance is

ΓΩ =
nppψ

∗
dµ

(Ls − Lµ)
{−Riqs − ωd [(Ls − Lµ) ids + ψdµ]} − sTL + npp

(
sψ∗dµ

)
iqs (262)

which consists of known signals (and we can make constant load torque assumption
sTL = 0) thus can be compensated using feedforward control:

nppψ
∗
dµ

(Ls − Lµ)
uqs = −ΓΩ + Jss

2Ω∗ + vq
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with the design term vq being used to modify the error dynamics into a standard
second order system using PD control:

vq = −KP (Ω −Ω∗)−KDs (Ω −Ω∗)

As a result, the controlled error dynamics become

Jss
2 (Ω −Ω∗) +KDs (Ω −Ω∗) +KP (Ω −Ω∗) = s

[
npp

(
ψdµ − ψ∗dµ

)
iqs
]

(263)

where an uncompensated disturbance appears on the right hand side. This disturbance
is nonzero as long as the flux control error is nonzero. This disturbance reveals that the
rotor speed subsystem is coupled to the active flux subsystem in a nonlinear fashion.

TODO: If the load torque is unknown, refer to Marino (2010) for load torque esti-
mator design.

3.4. Input Output Feedback Linearizing Control (IOFLC)

From the perspective of speed controller design, the proposal of the idea of rotor field
orientation is not natural, because the speed state never appears in the motivation.
Let’s apply the standard input-output linearizing to derive the controller law to the
induction motor model in αβ-frame, pretending we do not know anything about field
orientation and Park transformation.

It starts with a change of state variables to this 5th order nonlinear system

z1 = Ω
z2 = pz1 = J−1

s [npp (ψαµiβs − ψβµiαs)− TL]
z3 = ψ2

αµ + ψ2
βµ

z4 = pz3 = −2Rreq

Lµ

(
ψ2
αµ + ψ2

βµ

)
+ 2Rreq (ψαµiαs + ψβµiβs)

z5 = arc tan (ψβµ/ψαµ)

(264)

Assume sTL = 0, and the motor dynamics in the new state variables are:
ż1

ż2

ż3

ż4

ż5

 =


z2

Γ1

z4

Γ2

Ω + Rreq(ψαµiβs−ψβµiαs)
(ψ2

αµ+ψ2
βµ)

+


0 0
1

(Ls−Lµ)Js
0

0 0

0 2Rreq

(Ls−Lµ)

0 0


[
−ψβµ ψαµ
ψαµ ψβµ

] [
uαs
uβs

]

(265)
where terms like Γ1 and Γ2 are internal disturbances that are assumed known:

JsΓ1 = − 1

(Ls − Lµ)
Ω
(
ψ2
αµ + ψ2

βµ

)
−
(
Rreq

Lµ
+

R+Rreq

(Ls − Lµ)

)
(ψαµiβs − ψβµiαs)−Ω (ψαµiαs + ψβµiβs)

Γ2 =
R2

req

L2
µ

(
4 + 2

Lµ
(Ls − Lµ)

)(
ψ2
αµ + ψ2

βµ

)
+ 2RreqΩ (ψαµiβs − ψβµiαs)

−

(
6
R2

req

Lµ
+ 2Rreq

R+Rreq

(Ls − Lµ)

)
(ψαµiαs + ψβµiβs) + 2R2

req

(
i2αs + i2βs

)
(266)
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which can be compensated using feedforward control. Let’s introduce a feedforward
controller as follows[

uαs
uβs

]
=

1√
ψ2
αµ + ψ2

βµ

[
−ψβµ ψαµ
ψαµ ψβµ

] [
u∗qs
u∗ds

]

=
1√

ψ2
αµ + ψ2

βµ

[
−ψβµ ψαµ
ψαµ ψβµ

][
Js (Ls − Lµ) (−Γ1 + vα)
(Ls−Lµ)

2Rreq
(−Γ2 + vβ)

] (267)

where the intermediate controller commands u∗qs, u
∗
ds has been defined for ease of com-

parison to DRFOC. After the feedforward compensation, the feedforward compensated
dynamics become 

ż1

ż2

ż3

ż4

ż5

 =


z2

vα
z4

vβ
Ω +Rreq (Jsz2 + TL)/z3

 (268)

based on which, by using “deep” state as control input to a “shallow” state,35 we have
the following controller law design for vα and vβ

vα = −kωP (Ω −Ω∗)− kωDJ−1
s [(ψαµiβs − ψβµiαs)− TL − JssΩ∗] + s2Ω∗

vβ = −kψP
[(
ψ2
αµ + ψ2

βµ

)
− ψ∗2

]
− kψD

[
−2α

(
ψ2
αµ + ψ2

βµ

)
+ 2αM (ψαµiαs + ψβµiβs)− 2ψ∗ψ̇∗

]
+ 2ψ̇∗2 + 2ψ∗ψ̈∗

(269)
where note expressions for sΩ and sz3 have been substituted, and therefore the external
disturbance TL appears (and we have to assume TL is known for this controller design).
Finally, the controlled error dynamics are

s2 (Ω −Ω∗) + kωDs (Ω −Ω∗) + kωP (Ω −Ω∗) = 0

s2
(
ψ2
αµ + ψ2

βµ − ψ∗2
)

+ kψDs
(
ψ2
αµ + ψ2

βµ − ψ∗2
)

+ kψP

(
ψ2
αµ + ψ2

βµ − ψ∗2
)

= 0

(270)
from which it shows that the derivative control is added to tune the damping of the
second order systems.

As a conclusion, the Park transformation for field orientation (254) is in fact closely
related to the decoupling matrix needed in IOFLC:

D
(
ψαβµ

)
=

[
−ψβµ ψαµ
ψαµ ψβµ

]
(271)

with its determinant detD = ψ2
αµ + ψ2

βµ 6= 0 if the rotor flux amplitude is not null,
and its inverse matrix as

D−1
(
ψαβµ

)
=

1

ψ2
αµ + ψ2

βµ

[
−ψβµ ψαµ
ψαµ ψβµ

]
(272)

35“Deeper” means the state takes more time derivatives of the output to get.
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From this perspective, the DRFOC is an asymptotic IOFLC for controlling the two
tracking objectives of active flux amplitude and the rotor speed.

3.5. Indirect Rotor Field Oriented Control

Direct rotor field orientated control (DRFOC) assumes the rotor flux is available. In
practice, the rotor flux is almost never measured36, while the rotor angular position is
relatively easy to be measured. For PM synchronous motor, knowing the rotor angular
position Θ means the rotor field orientation is done. We need to find a way to utilize
the information of measured rotor angular position to achieve rotor field orientation
for induction motor.

Recall the angular speed assumption (251). Let’s assume the rotor angular speed
Ω = sΘ is somehow available. From (252a), we know that the d-axis angle can be
determined in a feedforward fashion as follows

θM =
1

s
ω∗syn (273)

which defines a new reference frame called MT -frame. Note this MT -frame does not
necessarily be aligned with the rotor field, and the M -axis angle θM as an internal
state implies we are designing a dynamic control law.

Transforming the rotor voltage equations into MT -frame yields

iMreq = LµψMµ − iMs

iT req = LµψTµ − iTs

0−RreqiMT req = J
d (θM − nppΘ)

dt
ψMTµ +

d

dt
ψMTµ

(274)

which is decomposed into

⇒

{
−RreqiMreq = −

(
dθM
dt − nppΩ

)
ψTµ + d

dtψMµ

−RreqiT req =
(

dθM
dt − nppΩ

)
ψMµ + d

dtψTµ

The current-source-inverter-fed induction motor is then represented by

⇒


JssΩ = −ψTµiMs + ψMµiTs − TL
sψMµ = −RreqL

−1
µ ψMµ +RreqiMs + (sθM − nppΩ)ψTµ

sψTµ = −RreqL
−1
µ ψTµ +RreqiTs − (sθM − nppΩ)ψMµ

The control error dynamics are:

⇒


JsseΩ = Jss (Ω −Ω∗) = −ψTµiMs + ψMµiTs − TL − sΩ∗

seψMµ = s (ψMµ − ψ∗) = −RreqL
−1
µ ψMµ +RreqiMs + (sθM − nppΩ)ψTµ − sψ∗

seψTµ = s (ψTµ − 0) = −RreqL
−1
µ ψTµ +RreqiTs − (sθM − nppΩ)ψMµ

36However, it is possible to measure the rotor flux angle by installing search coil to stator tooth, but one cannot
exactly measure the rotor flux amplitude because it is a property associated with the linked winding, as we
have learned in Chapter 2.
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which can be rewritten into

⇒


JsseΩ = −eψTµiMs + eψMµiTs + ψ∗iTs − TL − sΩ∗

seψMµ = −RreqL
−1
µ eψMµ + (sθM − nppΩ) eψTµ−sψ∗ −RreqL

−1
µ ψ∗ +RreqiMs

seψTµ = −RreqL
−1
µ eψTµ − (sθM − nppΩ) eψMµ− (sθM − nppΩ)ψ∗ +RreqiTs

⇒


ψ∗iTs − TL − sΩ∗= −kP eΩ
−sψ∗ −RreqL

−1
µ ψ∗ +RreqiMs= 0

− (sθM − nppΩ)ψ∗ +RreqiTs= 0

where the control law design is possible because by introducing an internal state, we
have obtained a third control DoF so we can impose three constraints. The design
constraints imposed above give us a dynamic control law as follows:

iTs =
−kP eΩ + TL + sΩ∗

ψ∗

iMs =
1

Rreq
sψ∗ +

1

Lµ
ψ∗

sθM = nppΩ +
RreqiTs
ψ∗

(275)

in which the last equation defines the synchronous speed and slip speed:

ω∗syn , nppΩ + ω∗sl (276)

ω∗sl ,
RreqiTs
ψ∗

(277)

This dynamic control law is known as the indirect rotor field oriented control (IRFOC).
Finally, let’s prove the Lyapunov stability of the above dynamic control law. Con-

sider the following Lyapunov function for the flux control subsystem:37

V =
1

2
e2
ψMµ +

1

2
e2
ψTµ (278)

which can be used to show that the flux control error will converge to zero as time
approaches infinity. We say the field orientation is asymptotically achieved. As a result,
the speed control error can be shown to be bounded or stable in the sense of Lyapunov.

3.6. Nested Loops PI Control versus PID Control

There are two ways that motivate we use a nested loops PI control.
First, for the DRFOC, there is a problem about the PD controller, we need to take

time derivative of the measured signals. The measurement noises will be amplified if
we take pure differentiation.

Second, for the IRFOC, we only derive desired values for the M -axis current and
T -axis current, but we do not know how to regulate currents towards theses goals yet.

We are going to introduce the nested loop PI control in the coding project.

37One can show that the third order error dynamics further including speed error is a nonlinear system, which
makes the stability proof much more involved.
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TODO:
Consider a second order system:

G (s) =
Ω

uq
=
nppψA

Jss

1

Lqs+R
(279)

Let’s define a intermediate state iq as

iq (s) =
1

Lqs+R
uq (280)

and use this intermediate state as the input to the speed dynamics.
By doing this, we have separated the two system We

3.7. Tuning PI Coefficients for Nested Loops

See Chapter 11 of TI InstaSPIN user’s guide. The conclusion made there about the
choice of damping factor is actually not very useful because a output saturation or
clamping is always used in practice, which makes the speed or current control a non-
linear control law, thus the conclusion made assuming the speed or current controller
a linear system is not final.

4. Chapter 4: Observer

There are three main topics in the field of artificial intelligence, i.e., unsupervised
learning, supervised learning, and reinforced learning.38 Those three topics can actually
be mapped to the three classic topics in the field of control engineering.

• Unsupervised learning deals with pattern recognition from data, which assem-
bles diagnosis. Diagnosis, in its simplest form, is to detect specific frequency
component in the spectrum of the measured signals, and it gets involved when
the signal is non-stationary, thus further needing tools (e.g., wavelet analysis)
that generates time-frequency map. The time-frequency map is essentially a 2D
picture that can further be used as input to the convolution neural network
(CNN) [16], and the learning transfer is able to facilitate the training of the
neural network for a distinct application.
• Supervised learning needs to further put a label to each datum before the datum

can be used for training, and a similar requirement is imposed on the data
for constructing an observer, estimator, or identifier. Observer, estimator or
identifier uses a pair of input and output signals for reconstructing state or
estimating parameter of a system. In discrete time domain, the reconstruction
of the state at the next step based on the history data in the past is also called
as prediction. Generally speaking, a filter is different from an observer, because
the filter does not need a feedback loop to direct output back to calculate the
estimated error. However, at the times of R. E. Kalman, there was no concept
of observer yet and he needed a term that would be easier to be accepted by the
community so the linear quadratic estimator (LQE) he develops was named as
Kalman filter.

38See, e.g., the lecture notes of MIT 6.S191 at http://introtodeeplearning.com/.

http://introtodeeplearning.com/
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• Reinforced learning introduces the concepts of agent and environment, and the
agent is able to influence the environment. Control, unlike diagnosis and ob-
server, interacts with the real world based on the measurement of signals.

This chapter focuses on the observer design for ac motor but the concept is generally
applicable to other systems.

4.1. Review on Modern Control System Theory

Consider a linear system:

sx = Ax+Bu

y = Cx
(281)

where x ∈ Rn, x ∈ Rn, x ∈ Rn.
Unfortunately, we will see soon that this kind of design cannot be used in control

of ac machines.

4.2. Motivation

In last chapter, the controller design is dependent on feedback of states of the ac
machines, including the αβ-frame current, the rotor (angular) speed, and the αβ-
frame active flux. Note the αβ-frame active flux is not needed in IRFOC.

The states of an ac machine include circuit states and mechanical states. It is im-
portant to be able to map those states with the feedback signals.

• The αβ-frame current is math representation of the currents of the multi-phase
stator circuits. The currents of the physical circuits can be measured using either
Hall sensors or shunt resistors (with a typical resistance value of 5 mΩ, see e.g.,
the GaN evaluation board by Texas Instruments).
• The αβ-frame active flux is mutual flux linkage of the αβ frame coils. The active

flux is in most cases not measured.
• The rotor (angular) speed is in most cases not measured and instead the rotor

angle is measured.

The problem is how we can get active flux or rotor speed. If the active flux is known,
the DRFOC can be implemented; if the rotor speed is available, the IRFOC can be
implemented. In order to implement the controller in practice, we need to learn about
the status of a system via sensors.

There are three kinds of problems needed to be solved in this chapter.

(1) Do flux estimation and the DRFOC can be implemented using the cosine and
sine of the active flux angle.

(2) Do speed estimation with a reference signal for active flux angle available, so
speed control based on DRFOC can be implemented.

(3) Do speed estimation and implement IRFOC where the d-axis angle is simply the
integral of estimated field speed.
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4.3. Sensor Imperfection

There is no perfect measurement, and noises, temperature drift and quantization error
are three main issues we encounter in practice.

4.3.1. Sensors for Inverse Pendulum

Taking the state measurement of an inverse pendulum for example, an accelerometer
and a gyroscope are often used. The measured rotor angle Θm by an accelerometer is
noisy

Θm = Θ + nΘ

where nΘ denotes measurement noise. A simple observer for rotor angle can be designed
as

sΘ̂ = 0 + k0

(
Θm − Θ̂

)
which can be rewritten as a low pass filter:

Θ̂ =
1

s+ k0
(Θ + nΘ)

To reduce the influence of the noise, we need to adjust the pole −k0 of the low pass
filter, which often sacrifices the bandwidth of the estimation.

The measured angular speed Ωm has temperature drift

Ωm = Ω + CΩ

where CΩ is an unknown constant disturbance that makes the following integration
unbounded:

Θ̂ =
1

s
Ωm

A simple sensor fusion algorithm becomes apparent

sΘ̂ = Ωm︸︷︷︸
Prediction

+ k0

(
Θm − Θ̂

)
︸ ︷︷ ︸

Innovation

which forms a basic observer with prediction term and innovation term, provided by
the gyroscope and accelerometer, respectively.

Another well known method to deal with the noise nΘ is the Kalman filter, which
is also a sensor fusion algorithm that takes useful information from both Θm and Ωm,
by introducing time-varying observer coefficients.

4.3.2. Sensors for AC Machine

For ac machines, the rotor angle Θ can be measured by, for example, an incremental
encoder, as shown in Fig. 24. The encoder has two key parameters, i.e., the pulse per
revolution (ppr) and the resolution. Higher ppr value does not always means higher
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Figure 24. The working principle of an encoder. Figure credit: https://www.anaheimautomation.com/
manuals/forms/encoder-guide.php

resolution. A typical low-end incremental encoder has 1024 ppr or 2500 ppr, while a
high-end encoder integrated into a servo motor, e.g., Sigma-7 series from Yaskawa, has
a ppr value up to 224, which is 16,777,216 pulses per revolution. The measured of the
rotor angle is a digital quantity and there is quantization error. In most cases, it is
safe to neglect the quantization error and assume the measured signal by an encoder
is the actual rotor angle Θ.

The current is sampled by ADC (analog-to-digital-converter). The resulting mea-
sured current quantity has both temperature drift and the quantization error. In most
cases, it is safe to neglect the temperature drift and quantization error, expect the
case when a pure integration is applied to the measured current signal.

4.3.3. Speed Signal Reconstruction based on Rotor Angle Measurement

The speed measurement using the encoder can be simply implemented as the number
of pulse counts divided by a fixed time duration. The pulses will be decoded by a QEP
module and several practical considerations are needed.

(1) Identify the angle between the index signal (Z signal) of the encoder and the
d-axis of the rotor.

(2) Take care of the incremental in pulse counts when the QEP module’s QPOSCNT
gets reset.

(3) Decide the time duration (i.e., the width of the moving average window) of speed
measurement considering the speed measurement resolution at steady state.

I believe for this engineering method, the talk is cheap, and I’d better show you the
code.

TODO: Add code snippet.

https://www.anaheimautomation.com/manuals/forms/encoder-guide.php
https://www.anaheimautomation.com/manuals/forms/encoder-guide.php
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4.4. Problem Formulation: A Unified Approach

We have derived the field oriented models for induction motor (252) and synchronous
motor (253). It is desired that we only design observer for one model. To this end,
both ac machines can be described by the unified active field oriented model

sθd = ωd = nppΩ + ωsl (282a)

sΩ =
1

Js
(Tem − TL) =

1

Js
(nppψAiqs − TL) (282b)

ψA =
Ld − Lq

Ld−Lq
Rreq

s+ 1
ids + ψPM (282c)[

uds
uqs

]
−R

[
ids
iqs

]
= (Jωd + s)ψdqs = (Jωd + s)

([
ψA

0

]
+ Lq

[
ids
iqs

])
(282d)

When (282) describes the PM synchronous machine, we need to put ωsl = 0 and
Rreq = 0. When (282) describes induction machine, we put ψPM = 0, ωsl = Rreqiqs/ψA,
redefine Ld as the stator inductance Ls, and redefine Lq as the leakage inductance
Ls − Lµ.

Note that we have avoided using the rotor angle Θ as the state but choose to use
the angle of the active flux, θd, as the state. As a result, this model shows that the ac
machine can be described using a current vector idqs, an active flux vector ψA∠θd and
a rotor angular speed Ω.

4.5. Speed Estimation based on the Unified Active Field Oriented Model

Let’s now design an encoderless observer using the unified model (282). Encoderless
means the encoder is not used in the motor drive, which is a particularly interesting
topic for induction motor, as the general purpose converter for induction motor often
does no use any position feedback signal. This means we need to design the prediction
part and the innovation part for the d-axis angle estimate.

The prediction part needs to be an estimate of the rotor angular speed Ω or angular
speed of the active flux, i.e., ωd. The motion dynamics (282b) are useless because there
is an unknown disturbance TL. The q-axis voltage equation, on the other hand, gives
an estimate of d-axis angular speed as follows

ω̂d =
uqs −Riqs − sLqiqs

ψA + Lqids
(283)

where a hat has been added to ωd because the dq frame quantities are obtained by an
estimated angle θ̂d rather than the actual angle θd.

The innovation part can be anything that is exactly zero when the rotor angle
estimate θ̂d is exactly equal to the real one θd. The d-axis equation comes handy for
this purpose:

ed,ss , uds −Rids − ω̂d (Lqiqs) (284)

where the estimate ω̂d has been substituted and therefore, whenever ωd or θd is erro-
neous, ed,ss is nonzero. In ideal case, ed,ss is equal to s (ψA + Lqids), which is zero at
steady state.
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Therefore, an encoderless observer can be designed as

sθ̂d = ω̂d + k0ed,ss

=
uqs −Riqs − sLqiqs

ψA + Lqids︸ ︷︷ ︸
Prediction

+ k0[uds −Rids − ω̂d (Lqiqs)]︸ ︷︷ ︸
Innovation

(285)

where all dq-frame quantities are obtained using θ̂d rather than θd. This is not the
only way to construct prediction and innovation. For example, it is also possible to
design observers for dq-frame currents and use the estimated d-axis current error as the
innovation, and use the integral of q-axis current error as the prediction [17, Eq.(18)],
from which it can be shown that the d-axis current prediction (i.e., the open loop
estimate) error reveals angle error while the q-axis current prediction error indicates
speed error.

4.6. The Arbitrary DQ Model

We can of course also design observers in a stationary reference frame. You might
remind me that we have chosen to adopt the DQ model considering the saliency of
the PM motor. However, another cool thing about the DQ model we use is that

sθd = ωd (286a)

sΩ =
1

Js
(Tem − TL) =

1

Js
[npp (ψdAiqs − ψqAids)− TL]

(286b)[
uds
uqs

]
−R

[
ids
iqs

]
= (Jωd + s)ψdqs (286c)[

udreq

uqreq

]
−Rreq

[
idreq

iqreq

]
= [J (ωd − nppΩ) + s]ψdqA (286d)

The

4.7. Flux Estimator

In (282d), there is a simple relation between the stator flux and the active flux:

ψdqs = ψdqA + Lqidqs =

[
ψA

0

]
+ Lqidqs

⇒ ψαβs = ψαβA + Lqiαβs

(287)

which turns the active flux estimation problem into a stator flux estimation problem.
Theoretically speaking, the stator flux can be directly obtained in αβ-frame by

integrating the stator back electromotive force and the active field oriented d-axis
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angle can easily be calculated:

ψαβs =
1

s
(uαβs −Riαβs)

ψαβA = ψαβs − Lqiαβs
θd = arctan2 (ψβA, ψαA)

(288)

This is a typical open loop estimation that is vulnerable to disturbance. For instance,
the temperature drift in the measured current iαβs,m = iαβs + [Cα, Cβ]T would result
in unbounded integral. Therefore, we need to close the loop by feeding back some
innovation term.

A typical flux estimator has a form as follows:

sψ̂αβs = uαβs −Riαβs,m︸ ︷︷ ︸
Prediction

+ D̂︸︷︷︸
Innovation+

Compensation

(289)

which also consists of a prediction term and an innovation term.
Before we move on to show how one can design D̂, I believe there is a more heuristic

way to design an observer.

Step 1 implement the open loop predictor (i.e., without any innovation term);
Step 2 observe which quantity can be used for innovation;
Step 3 add innovation term and test the synthesized observer.

In our case, if you simulate the open loop flux estimator from various perspectives,
you will possibly find different ideas for constructing an innovation term. The said
perspectives include:

• The time domain waveform of the αβ components of the estimated flux.
• The amplitude and angle of the estimated flux.
• The Lissajour figure of the estimated flux.

4.7.1. Time Domain Approach

There are two effective innovation terms and they belong to the time domain approach.
The first one is to compare the amplitude of the estimated active flux with that in
(282c) and if they do not match, a correction to the integrand is needed. The second
one is to record the peak value of the active flux estimate profile and if the maximum
and minimum do not match, a correction can be made to the integrator’s input or
output. There are of course hundreds of variants of flux estimators, but they all need
some kind of innovation process.

4.7.2. Frequency Domain Approach

From a perspective of frequency domain performance, the open loop integral is criti-
cally stable as its dc gain is infinite. The integrator can be stabilized by moving the
pole to the left of the complex number plane. However, the resulting flux estimate
becomes lagging to the real flux.

There are suggestions of adding exact compensation at the current working fre-
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quency:

ψ̂s =
jω̂ + k |ω̂|

jω̂

1

s+ k |ω̂|
(eαs + jeβs) =

[I − kJsign (ω̂)] es
s+ k |ω̂|

(290)

with k a scalar gain. The stator electromotive force is es = us −Ris and this estima-
tor must be implemented in αβ-frame, thus omitting indication of αβ in the vector
subscript. However, the compensation is only exact at steady state.

In my opinion, trying to get a perfect flux estimation using frequency domain ap-
proach is ineffective. A better approach would be sticking with the IRFOC and use
the lagged flux estimate to produce a fast speed estimate, as is done by Schauder
(1992) [18].

4.8. Speed and Load Torque Reconstruction by Position Output Observer

The noise in the measured rotor angle is essentially a quantization error rather than
white noise, thus speed observer is not a good application for Kalman filter. Instead,
the speed signal can be reconstructed from the measured rotor angle Θ by designing
a Luenberger observer:

sΘ̂ = Ω̂ + k0

(
Θ − Θ̂

)
sΩ̂ = Tem + 0 + k1

(
Θ − Θ̂

) (291)

where note the load torque is unknown and is substituted by a zero, and the error
dynamics are {

sΘ̃ = Ω̃ − k0Θ̃

sΩ̃ = −TL − k1Θ̃
(292)

which can be rewritten into a matrix form as follows:

s

[
Θ̃

Ω̃

]
=

[
−k0 1
−k1 0

] [
Θ̃

Ω̃

]
+

[
0
−TL

]
(293)

Neglecting the disturbance −TL in the error dynamics, the stability of the autonomous
system is determined by the eigenvalues of the homogeneous matrix:

det

([
s+ k0 −1
k1 s

])
= s2 + k0s+ k1 (294)

⇒ s =
−k0 ±

√
k2

0 − 4k1

2
(295)

There are two issues about the above design, one obvious and one hidden. The
hidden issue is the electromagnetic torque’s dependency on the d-axis angle: Tem =
Tem(θd), while the obvious one is the load torque disturbance.

• One way to deal with the Tem’s dependency to d-axis angle, is to use d-axis angle
as the state instead of rotor angle Θ.
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• The load torque disturbance can be estimated if we further increase the order
of our observer; Or, implementing a dedicated load torque disturbance observer
will do the job.

4.8.1. Load Torque Disturbance Observer

We have mentioned that we can do fast disturbance estimation by designing a dis-
turbance observer (247), if the speed is measured. However, since the speed is not
measured while the rotor angle is measured, we can do a second order disturbance
estimation as follows

T̂L = Q (s) (Tem − sΩ)

= Q (s)
(
Tem − s2Θ

) (296)

where Q(s) is a proper low pass filter that is of at least order 2.

4.8.2. Joint Speed and Load Torque Estimation

From a different perspective, the load torque is not necessarily a disturbance.
Since the load torque is unknown, it is inevitable to assume its dynamics before

estimating it. The simplest model for load torque is to assume it is a constant, and
in this case, we shall interpret it as a parameter of the system. Therefore, the load
torque estimation is an adaptive observer design problem according to the classics [19].
However, it can be shown that the extended state observer (or to be specific, the
extended Kalman filter in deterministic environment) is equivalent to the adaptive
observer [20]. So it also fine to treat the load torque as an extended state.

In fact, treating the disturbance as an extended state is more general. For example,
when we want to model a hand grip on the rotor shaft, the time domain profile of the
load torque can be considered linear to time, i.e., TL = c0t, and we can model it as a
type-II linear system response: TL = c0

s2 . This leads to the following position output
observer:

sϑ̂ =
(
nppΩ̂ + ωsl

)
+ k0

(
ϑ− ϑ̂

)
sΩ̂ = Tem(ϑ) + d̂+ k1

(
ϑ− ϑ̂

)
sd̂ =

(
k2 +

k3

s

)(
ϑ− ϑ̂

) (297)

where note the dependency of Tem to the reference signal ϑ. It can be shown that the
state space approach here limits the design choices of speed estimation, and a more
general approach to define the speed estimation is pending.
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4.8.3. The Generalized Speed Estimation

Taking the above discussion into account, we can further summarize the existing de-
signs of speed observer into the following generalized form:

sϑ̂ = f(ϑ) +

n∑
j=0

kj
|ϑ̃|κjsign(ϑ̃)

sj
, with kj , κj ≥ 0

f(ϑ) = ωsl + npp

sJs
Tem

(298)

where to avoid confusion, we use a different symbol for the reference signal ϑ = θ̂d.
Examples of the general position observer in literature are listed in (25). The resulting
general speed estimate is

ω̂j0 =f(ϑ) +

n∑
j=j0

kj
|ϑ̃|κjsign(ϑ̃)

sj
with j0 = 0, 1, 2, ..., n (299)

Different choices of j0 affect the tracking performance, disturbance rejection capability,
and noise attenuation performance, which we will discuss in chapter 6.

Figure 25. Examples for the general speed observers [17].

The d-axis angle dynamics is not the only model that contains speed. In other words,
any model that has speed in it can be used for extraction of the speed signal. See [21]
for a q-axis current output observer used for speed estimation.

4.8.4. Trick for Calculation of the Angle Error

1. Calculate the sine of the angle error, assuming angle error is small enough.
2. Use if-else-clauses.

4.9. Observability

In short, the speed cannot be observed when the excitation frequency to the ac machine
is dc or 0 Hz. Note 0 Hz means zero speed for PM motor but a loaded induction motor
shaft can still rotate because the slip frequency is nonzero such that slip speed and rotor
speed add up to zero. However, it has been shown that the locally weak observability
can be preserved at ωsyn = 0, if an auxiliary observability vector in dq-frame

ψdqO ,

[
ψA

− (Ld − Lq) iq

]
(300)
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should rotate or change its direction with respect to the d-axis. See [17, Sec.VI] for
details.

4.10. Joint Observer-Controller Stability

So far, we haven’t really analyzed the stability of the observers we discussed. In fact,
since the ac machine is a nonlinear system, the separation principle39 does not work
anymore. Therefore, there is a need to do the analyze observer-controller stability

We are now going to show one elegant nonlinear speed tracking control design that
assumes flux feedback is available. In other words, it is a cascaded design with stage
one being the flux estimator and stage two being the nonlinear control.

See [22] for the nonlinear controller design. It is interesting to note the procedure
used in the stability proof is very alike to our adaptive controller design development
in section 3.1.4.

If you want to move one step further such that there is no need of flux feedback
assumption, see the work published with Automatica [23]. The stability proof of this
system is beyond the scope of this course.

39See, e.g., equation (11.22) in the 14th edition book by Bishop.
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5. Chapter 5: Inverter

The emergence of the power electronic devices and inverter gives us the capability to
apply the voltage input to the ac machines. In this chapter, we are only interested
with voltage stiff inverter (VSI). As a comparison, the current stiff inverter (CSI) that
has a dc bus inductor needs to be implemented using a semiconductor power switch
that features reverse blocking (i.e., no free-wheeling), see e.g., [24, 25].

5.1. Motor Control: a Perspective (Part II)

Let’s revisit the topic of motor control with practical considerations. A physical system
does not allow arbitrary large input. From the perspective of the current control, the
input voltage is limited by the dc bus voltage of the inverter or the insulation of copper
wires. From the perspective of the speed control, the armature current is limited by
the thermal capability of the machine, which is often evaluated by the i2t metric.

5.1.1. Limit to the Control Input for Linear System

Motivation for LQR. The objective and contradiction in optimal control.

5.1.2. Limit to the Control Input using a Nonlinear System

Paste Figure 11-14, 11-15 from InstaSPIN.

5.1.3. PID with Dynamic Anti-Windup

In Chapter 11 of TI InstaSPIN user’s guide, there is one section about the dynamic
anti-windup of the current controller. I do not recommend this implementation, but
it is still useful to demonstrate the basic idea of anti-windup.

Here is a code snippet that implements the PID with anti-windup mechanism using
Tustin’s method (ode2).

1 @njit(nogil=True)
2 def tustin_pid(reg):
3
4 # Error signal
5 error = reg.setpoint - reg.measurement
6
7 # Proportional
8 proportional = reg.Kp * error
9

10 # Integral
11 reg.integrator = reg.integrator + 0.5 * reg.Ki * reg.T * (error

+ reg.prevError) # Tustin
12 # reg.integrator = reg.integrator + reg.Ki * reg.T * (error) #

Euler
13
14 # Anti-wind-up via integrator clamping */
15 if reg.integrator > reg.IntLimit:
16 reg.integrator = reg.IntLimit
17 elif reg.integrator< -reg.IntLimit:
18 reg.integrator = -reg.IntLimit
19



EE275 Spring’23 105 Chen, Jiahao

20 # Derivative (band-limited differentiator) # Note: derivative
on measurement, therefore minus sign in front of equation!
*/

21 reg.differentiator = -(2.0 * reg.Kd * (reg.measurement - reg.
prevMeasurement) \

22 + (2.0 * reg.tau - reg.T) * reg.
differentiator) \

23 / (2.0 * reg.tau + reg.T)
24
25 # Compute output and apply limits
26 reg.Out = proportional + reg.integrator + reg.differentiator
27
28 if reg.Out > reg.OutLimit:
29 reg.Out = reg.OutLimit
30 elif reg.Out< -reg.OutLimit:
31 reg.Out = -reg.OutLimit
32
33 # Store error and measurement for later use */
34 reg.prevError = error
35 reg.prevMeasurement = reg.measurement
36
37 # Return controller output */
38 return reg.Out

Let IntLimit = OutLimit - proportional to implement dynamic clamping.

5.1.4. Incremental PID

Let’s implement an ode1 version for incremental PID, in which the dynamic clamping
is naturally implemented with only one block of output saturation.

1 @njit(nogil=True)
2 def incremental_pi(reg):
3 reg.Err = reg.setpoint - reg.measurement
4 reg.Out = reg.OutPrev + \
5 reg.Kp * (reg.Err - reg.ErrPrev) + \
6 reg.Ki * reg.Err
7 if reg.Out > reg.OutLimit:
8 reg.Out = reg.OutLimit
9 elif reg.Out < -reg.OutLimit:

10 reg.Out = -reg.OutLimit
11 reg.ErrPrev = reg.Err
12 reg.OutPrev = reg.Out

5.1.5. When Speed Is Too High or Too Low

When the modulation-to-sampling rate is higher than 1.15 for SVPWM.
The regenerative braking mode at very low speeds, the inverter becomes a boost

converter.

5.1.6. Bandwidth and Change Rate

The highest current bandwidth is determined by the dc bus voltage.
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Figure 26. Three phase inverter and symbol definitions.

5.2. Three-Phase Three-Wire Inverter

Consider the electrical system of a 3 phase half bridge inverter and a wye-connected
stator winding as in Fig. 26. This is a typical 3 phase 3 wire system with the neutral
open.40

5.3. Control of Voltage Source Inverter

On the one hand, given a 3 phase 3 wire inverter (see e.g., 26), what is at our control
is the duty ratio Sx, x = a, b, c that ideally produces the following inverter terminal
voltages:

uaG = SaVdc > 0, Sa ∈ [0, 1]

ubG = SbVdc > 0, Sb ∈ [0, 1]

ucG = ScVdc > 0, Sc ∈ [0, 1]

(301)

with subscript G denoting the negative of the dc bus, in which the concept of volt-
second equivalence has been adopted.

On the other hand, the controller law we developed in previous chapters specifies
the desired voltage commands in αβ-frame, i.e., uαβs. The rest of this chapter aims
to develop the bridge between uxG and uαβs.

40If point n and point g are electrically connected, it becomes a 3 phase 4 wire system, in which phase voltage
equals to terminal voltage, i.e., neutral to dc bus center voltage.
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5.3.1. Sine-triangle PWM

A very natural idea is to simply use the inverse Clarke transformation that gives the
phase voltages: uαs

uβs
uγs

 =

√
2

3

 1 −1
2

−1
2

0
√

3
2

−
√

3
2

1√
2

1√
2

1√
2


 uan
ubn
ucn

 =

√
2

3

 1 −1
2

−1
2

0
√

3
2

−
√

3
2

1√
2

1√
2

1√
2


 uaG + uGn
ubG + uGn
ucG + uGn



=

√
2

3

 1 −1
2

−1
2

0
√

3
2

−
√

3
2

1√
2

1√
2

1√
2


 uaG
ubG
ucG

+

 0
0√

3uGn


(302)

where our voltage control law specifies zero neutral-axis voltage: uγs = 0.
In order to impose the constraint Sx ∈ [0, 1], let’s assume the phase voltages are

sinusoidal

uan = VSPWM sinφa = (VSPWM sinφa + VSPWM)︸ ︷︷ ︸
uaG

−VSPWM︸ ︷︷ ︸
uGn

= uaG + uGn

ubn = VSPWM sinφb

ucn = VSPWM sinφc

(303)

where VSPWM is the phase voltage amplitude that needs to be bounded by our choice
of inverter control law Sx.

Our objective is to derive inverter control law Sx ∈ [0, 1]. One straightforward idea
is simply adding a dc bias to phase voltage:

uaG = SaVdc = VSPWM sinφa + VSPWM (304)

⇒ Sa = Sa (φa;VSPWM) =
VSPWM sinφa + VSPWM

Vdc
(305)

which ensures Sa ∈ [0, 1]. In literature, this idea is known as the sine-triangle PWM or
SPWM. “Sine” is due to the assumption of the modulation waveform uaG to be a biased
sinusoidal, and “triangle” is related to the hardware implementation for calculating
duty ratio Sx involves triangular carrier signal.

When over-modulation is not allowed, that is, when Sx ≤ 1, we can derive the
maximal allowed phase voltage amplitude is:

max
VSPWM

(
max
φa

(Sa)

)
≤ 1⇒ VSPWM ≤

1

2
Vdc (306)

The maximal phase voltage amplitude by SPWM is half the dc bus voltage.
The maximal line-to-line voltage is

uab = VSPWM

(
sinφa − sin

(
φa −

2

3
π

))
=
√

3VSPWM sinφab (307)
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Figure 27. Differences in phase voltage uxn are always less than the sinusoidal amplitude.

and the maximal line-to-line voltage amplitude by SPWM is

max (uab) =
√

3 max (VSPWM) =

√
3

2
Vdc = 0.866Vdc < Vdc (308)

5.3.2. DC Bus Voltage Utilization

It is easy to validate that maximal instantaneous value for line-to-line voltage must
be Vdc. For example, when terminal a is connected to dc bus positive, and terminal b
is connected to dc bus negative. Therefore, we may conclude that the inverter control
law, SPWM (305), does not take full capability of the inverter as is revealed in (308).

Let’s draw all phase voltages in one plot in Fig. 27. Without loss of generality, let’s
assume the Vdc = 1 V and apparently max(Sx) = 1. From Fig. 27, it is seen that at
any time instant, the maximal difference among the three phase voltages is less than
the amplitude of the sinusoidal, 1 V.

This motivates us to visualize the dc bus voltage utilization by calculating “maximal
difference among the three phase voltages ”, which can be rewritten in math language
as

ηVdc =
max (uan, ubn, ucn)−min (uan, ubn, ucn)

2
(309)

where ηVdc is known as the span of the three phase voltages. The time domain wave-
form of the SPWM span ηVdc < 1 V is visualized in Fig. 28. Our objective is to
increase the span ηVdc to be equal to Vdc, but using SPWM, the black dots in Fig. 27
are already reaching the limits of -1 V and 1 V.

5.3.3. Space Vector PWM

In order to improve the dc bus voltage utilization ratio, the span ηVdc needs to be
maximized. The maximal allowed span ηVdc occurs when the black dots in Fig. 27
reaching Vdc = ±1 V, and the span is simply the distance between the two black dots
at the same instant. Let’s call the vertical line between the two black dots as the “span
dimension line”. The red dots in Fig. 27 are the middle points of the “span dimension
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Figure 28. The utilization ratio of the SPWM corresponding to (27).

line”. The location of the red dots can be calculated as

max (uan, ubn, ucn) + min (uan, ubn, ucn)

2
(310)

In order to create more space for the black dots, one idea is to move the red dots
to 0 V. This can be achieved by deliberately injecting some neutral-axis voltage as
follows:

uγs√
3

= −max (uan, ubn, ucn) + min (uan, ubn, ucn)

2
(311)

and the resulting phase voltage becomes:

(311)⇒ uan = VSVPWM sinφa︸ ︷︷ ︸
due to uαs and uβs

− max (uan, ubn, ucn) + min (uan, ubn, ucn)

2︸ ︷︷ ︸
due to zero seuqence voltage uγs

(312)

which effectively forces the red dots in Fig. 27 to stay at 0 V.
Finally, the terminal voltage and inverter control law can be accordingly determined

as:

(312)⇒ SaVdc = uaG = VSVPWM sinφa+VSVPWM−
max (uan, ubn, ucn) + min (uan, ubn, ucn)

2
(313)

and note this injects a zero sequence component in the three phase duty ratio control
variables:∑
x=a,b,c

S∗x = Sa+Sb+Sc =
3

Vdc

(
VSVPWM −

max (uan, ubn, ucn) + min (uan, ubn, ucn)

2

)
(314)

This inverter control law is also known as the middle-point clamping of the zero
sequence modulation (ZSM). In other words, its key idea is to move the three phase
voltages up and down such that at any instant, the “span dimension line” of the three
phase voltages are centered about the middle point Sx = 0.5, hence the name middle
point clamping.

Middle-point clamped zero sequence modulation (ZSM)41 is also known as space

41See the tutorial of the zero sequence modulation and space vector modulation by Microchip company at
https://skills.microchip.com/zero-sequence-modulation-for-three-phase-motors.

https://skills.microchip.com/zero-sequence-modulation-for-three-phase-motors
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vector PWM (SVPWM). For a different derivation for the same inverter control law
(312), see Appendix G.

Regarding the numbers of the dc bus voltage utilization ratio, the constraint Sa ≤ 1
leads to the maximal terminal voltage:

max (uaG) = 2VSVPWM −
max (uan, ubn, ucn) + min (uan, ubn, ucn)

2
≤ Vdc

⇒ VSVPWM ≤
Vdc

2
+

max (uan, ubn, ucn) + min (uan, ubn, ucn)

2
=

1√
3
Vdc

(315)

which yields

(312)⇒ max (uab) = max (uaG − ubG) = Vdc

We conclude that the SVPWM is able to achieve a unity dc bus voltage utilization
ratio, as we have desired in section 5.3.2.

5.3.4. ZSM in SVPWM

The SVPWM inverter control law S∗a can be summarized in the following process:√
2

3
u∗αs +

u∗γs√
3

= u∗an + u∗ZSM = u∗aG + uGn⇒ Inverter Control Law

= S∗aVdc + uGn =

(
VSVPWM sinφa + VSVPWM −

max (uan, ubn, ucn) + min (uan, ubn, ucn)

2

)
− VSVPWM

(316)
where we have injected the ZSM voltage as follows

u∗ZSM = −max (uan, ubn, ucn) + min (uan, ubn, ucn)

2
(317)
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5.4. Change of Voltage Reference

Previously, we have assumed that the terminal voltage is uxg = SxVdc with Sx the
duty ratio of the power switch. The duty ratio is equal to the conducting time divided
by PWM period:

Sx =
Tx

TPWM
(318)

where TPWM designates the PWM period and Tx ∈ [0, TPWM] denotes the actual
conducting-time of phase x inverter leg. A typical value range of TPWM silicon based
power switch is TPWM ∈ [0.5e-4, 2.5e-4] s. The resulting terminal voltage is

(318)⇒ uxG = VdcSx = Vdc
Tx

TPWM

⇒ uxg =
Vdc

2
(2Sx − 1) =

Vdc

2

(
2Tx
TPWM

− 1

) (319)

where point G is the dc bus negative and point g denotes dc bus center. In the sequel,
we will refer the voltage to g instead of G.

5.5. Time Average Inverter Model Considering Voltage Drops

In reality, the voltage source inverter is not a perfect power supply and its terminal
voltage uxg is dependent on its load current ix. One well known TPWM-period average
model for terminal voltage uxg is [26]

uxg=
Vdc−Vce+Vd

2

(
2Tx
TPWM

−1

)
− 1

2
sign(ix) (Vce+Vd) (320)

where Vce and Vd are the voltage drop of the switching device42 and the freewheeling
diode, respectively, and they can be further modelled as Vce = Vce0 + rce|ix| and
Vd = Vd0 + rd|ix| with Vce0 and Vd0 positive constants; rce and rd are the resistance of
the switching device and the freewheeling diode, respectively. The expression for uxg
can be rewritten as

uxg =
Vdc − Vce + Vd

2

(
2Tx
TPWM

− 1

)
− 1

2
sign (ix) (Vce0 + Vd0)− 1

2
(rce + rd) ix (321)

which implies that the inverter has internal resistance of rce+rd that will be connected
to the stator winding. It is desired that R � rce + rd, which serves as one rule for
pairing motor and inverter.

This model seems complicated but it is in fact rather intuitive if we consider two
extreme cases when Tx = 0 or Tx = TPWM, leading to 4 scenarios further considering

42Subscript c and e stand for collector and emitter, respectively.
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Figure 29. Three options for inserting dead time. The original figure is a screenshot from the technical

reference for DSP 2837x ePWM module.

the load current direction:

uxg = −Vdc

2
− Vd, if Tx = 0 and ix > 0

uxg = −Vdc

2
+ Vce, if Tx = 0 and ix < 0

uxg =
Vdc

2
− Vce, if Tx = TPWM and ix > 0

uxg =
Vdc

2
+ Vd, if Tx = TPWM and ix < 0

(322)

5.6. Dead Time

The semiconductor power switch has rise time and fall time such that there is a delay
between the gate signal and the switch action and there is a risk both switches from
the same half bridge leg are ON at the same time instant. Additional dead time
(when both switches are OFF) is inserted into the gate signal. Three different delay
implementations of dead time are shown in Fig. 29.

5.7. Time Average Inverter Model Further Considering Dead Time

In practice, the actual conducting time Tx is not at our control, and it is equal to:

Tx = T ∗x + sign(ix)(−Ton + Toff − Tdead) (323)
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where Tdead, Ton, Toff are dead time, rising time and falling time, respectively, The
resulting terminal-to-center voltage becomes

uxg =
Vdc−Vce+Vd

2

(
2
T ∗x + sign(ix) (−Ton + Toff − Tdead)

TPWM
−1

)
− 1

2
sign(ix) (Vce+Vd)

=
Vdc−Vce+Vd

2

(
2

T ∗x
TPWM

−1

)
+ Vdistsign(ix)− 1

2
(rce + rd) ix

(324)
with an inverter distortion voltage parameter defined as

Vdist , (Vdc−Vce+Vd)
(
−Ton + Toff − Tdead

TPWM

)
− 1

2
(Vce0+Vd0)

which reveals that there are two kinds of distortion, one is due to the voltage drops of
the power switches and the other is due to the conducting time error.

5.8. The Neutral to Center Voltage

From (302), recall

uxg = uxn + ung, x = a, b, c (325)

uγs =

√
2

3

1√
2

(uan + ubn + ucn) (326)

and we can now derive the expression for neutral to center voltage ung:

ung =
1

3
(uag + ubg + ucg)−

1

3
√

3
uγs (327)

which means the voltage difference ung is closely related to the zero sequence compo-
nent of the inverter’s terminal voltage and the zero sequence component of the winding
phase voltage.

According to (327), ung can be derived as

ung =
1

3
(uag + ubg + ucg)−

1

3
√

3
uγs

=
Vdc−Vce+Vd

3

(∑
x=a,b,c T

∗
x

TPWM
− 3

2

)
+
Vdist

3

∑
x=a,b,c

sign(ix)− rce + rd
6

∑
x=a,b,c

ix −
1

3
√

3
uγs

(328)
where note the term involving Vdist collects all distortion, and note for wye connected
winding we have

∑
x=a,b,c ix = 0.

What we are really interested in is the phase voltage uxn and its expression is,
however, a function of 3 phase conducting time T ∗a , T

∗
b , T

∗
c , because of the neutral-to-
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center voltage ung(T
∗
a , T

∗
b , T

∗
c ). The phase voltage is

uxn = uxg − ung =
Vdc−Vce+Vd

2

(
2

T ∗x
TPWM

−1

)
+ Vdistsign(ix)− 1

2
(rce + rd) ix

−

Vdc−Vce+Vd
3

(∑
x=a,b,c T

∗
x

TPWM
− 3

2

)
+
Vdist

3

∑
x=a,b,c

sign(ix)− 0− 1

3
√

3
uγs


=
Vdc−Vce+Vd

3

3T ∗x −
∑

x=a,b,c T
∗
x

TPWM
+

3Vdistsign(ix)−
∑

x=a,b,c sign(ix)

3
− 1

2
(rce + rd) ix +

1

3
√

3
uγs

(329)
which shall be rearranged into a form of “command + distortion + ZSM term +
resistor voltage drop” as follows

uxn = u∗xn −Dx + uZSM −
1

2
(rce + rd) ix (330)

For instance, when x = a, recall (314) and the phase a voltage is

uan =
Vdc−Vce+Vd

3

3S∗a −
∑

x=a,b,c

S∗x

+
3Vdistsign(ix)−

∑
x=a,b,c sign(ix)

3
− 1

2
(rce + rd) ix +

1

3
√

3
uγs

= VSVPWM sinφa︸ ︷︷ ︸
u∗an

+ (−Vce+Vd)S∗a − (Vdist [2sign(ia)− sign(ib)− sign(ic)])︸ ︷︷ ︸
−Da

+
1

3
√

3
uγs︸ ︷︷ ︸

uZSM

− 1

2
(rce + rd) ia

(331)
in which it is of interest to note the following expression for phase voltage:

u∗an = Vdc

S∗a − 1

3

∑
x=a,b,c

S∗x

 = VSVPWM sinφa (332)

In practice, Vdc is often large enough to assume that

(Vdc−Vce+Vd)S∗a ≈ VdcS
∗
a (333)

or equivalently that

(−Vce+Vd)S∗a ≈ 0 (334)

so the distortion voltage can be simplified into

Da = Vdist [2sign(ia)− sign(ib)− sign(ic)] + (Vce+Vd)S
∗
a (335)

≈ Vdist [2sign(ia)− sign(ib)− sign(ic)] (336)

= 3Vdistsign(ia)− Vdist

∑
x=a,b,c

sign(ix) (337)

in which the last equation allows us to write Da(ia) as a function of phase current
ia, because the dependency on other phase currents is a zero sequence component. In
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conclusion, the inverter distortion voltage has one phase voltage component that has
a peak value of 3Vdist and one zero sequence component.

5.9. Converting Inverter Model to αβ Quantities

By applying the Clarke transformation, the phase voltage quantities are transformed
into α-β quantities

u∗αβs =

[
u∗αs
u∗βs

]
=
Vdc − Vce + Vd

3TPWM

√
2

3

[
3T ∗a − 1.5T ∗b − 1.5T ∗c√

3
2 (3T ∗b − 3T ∗c )

]
= T (0)

 u∗an
u∗bn
u∗cn


u∗αβs =

[
u∗αs
u∗βs

]
= (Vdc − Vce + Vd)

√
2

3

[
S∗a − 1

2S
∗
b −

1
2S
∗
c√

3
2 (S∗b − S∗c )

]
= T (0)

 u∗an
u∗bn
u∗cn


(338)

and the distorted voltages are derived as

Dαβ =

[
Dα

Dβ

]
= 3Vdist

√
2

3

[
sign (ia)− 1

2sign (ib)− 1
2sign (ic)√

3
2 (sign (ib)− sign (ic))

]
= T (0)

 Da

Db

Dc


(339)

5.10. Inverter Voltage Error Compensation in Phase Quantities

Recall the stator voltage equation in αβ frame is

uαβs = Riαβs + sψαβs (340)

where the stator voltage u is generally defined as

uαβs = u∗∗αβs −Dαβ = u∗αβs + D̂αβ −Dαβ (341)

Here we introduce a inverter error compensated voltage command u∗∗αβs.
Alternatively, we can compensate the inverter in terms of phase quantities:

uag = u∗∗ag −Da (ia) = u∗ag + D̂ (ia)−D (ia) = uan + ung (342a)

ubg = u∗∗bg −Db (ib) = u∗bg + D̂ (ib)−D (ib) = ubn + ung (342b)

ucg = u∗∗cg −Dc (ic) = u∗cg + D̂ (ic)−D (ic) = ucn + ung (342c)

where uxn, x = a, b, c, is the actual phase voltage applied to the stator winding;
Dx(·), x = a, b, c is the sampling-time-average distorted voltage of one inverter leg,
which is assumed to be a function of its phase current; uxg, x = a, b, c, is the actual
motor terminal voltage; and u∗∗xg, x = a, b, c, is the commanded terminal voltage
including compensation as follows

u∗∗xg = u∗xg + D̂x (ix) , x = a, b, c (343)
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where D̂x(·) is the compensation voltage per phase, and u∗xg is the motor controller
output voltage.

In our simulation, when an ideal inverter is assumed, the “zero sequence voltage” ung
is neglected and assume that the motor controller can control phase voltage directly,
i.e., u∗xg = uxn. However, the same codes can be directly used in experiment where
zero sequence voltage is indeed present. This is due to the following attribute of the
Clarke transformation: uαs

uβs
uγs

 =

√
2

3

 1 −1
2

−1
2

0
√

3
2

−
√

3
2

1√
2

1√
2

1√
2


 uag
ubg
ucg

 =

√
2

3

 1 −1
2

−1
2

0
√

3
2

−
√

3
2

1√
2

1√
2

1√
2


 uan
ubn
ucn

+

 0
0
ung


(344)

Therefore, we can neglect the zero sequence component without introducing any sim-
ulation error in αβ-axes quantities. This is one of the many reasons why we have to
solve the motor dynamics in a direct-quadrature reference frame. Do remember that
the zero sequence voltage affects the dc bus voltage utilization ratio.

5.10.1. Brief Summary

To recap, in virtue of the Clarke transformation attribute (344), the commanded ter-

minal voltage u∗∗xg = u∗xg + D̂x of a 3 phase 3 wire system is converted into αβ-frame

voltage uαβs and αβ-frame compensation D̂αβ. The latter rejects the voltage distur-
bance Dαβ, and the former regulates stator current or stator flux through the voltage
equation (340).

In practice, the following procedure is implemented in C codes:

(1) The voltage commands u∗αβs are first given from motor controller, and the in-
verter control aims to produce an actual voltage uαβs that equals to the com-
mand; Inverse Clarke transformation T (0)−1 gives the voltage commands in
phase quantities u∗xn; For example, u∗an = VSVPWM sinφa;

(2) A voltage compensation D̂a is added, resulting in u∗∗an = u∗an + D̂a(ia) and the
compensation is dependent on one parameter Vdist only:

D̂a (ia) = Vdist

3sign(ia)−
∑

x=a,b,c

sign(ix)


(3) From u∗∗an, the commanded conducting time T ∗∗a is computed by SVPWM:

S∗∗a =
u∗∗an
Vdc

+
VSVPWM

Vdc
−max (uan, ubn, ucn) + min (uan, ubn, ucn)

2Vdc
=

T ∗∗a
TPWM

=
u∗∗aG
Vdc

in which the command T ∗∗a contains the compensation time for rise time, falling
time and dead time.

(4) Substitute T ∗∗a into (324) to calculate the actual terminal voltage; Note terminal
voltage uxG or uxg is equivalent to uxn in αβ frame as per (344).

The above compensation scheme depends on one key parameter is Vdist, so we need to
experimentally determine Vdist before we can execute dead-time compensation.
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5.10.2. Square-wave Compensation

As a comparison, in Choi and Sul’s paper [26], the compensation voltage is

D̂a = 3Vdistsign (ia) (345)

which is also known as the square-wave dead time compensation in literature. Note the
zero sequence component is not compensated, and therefore the ZSM will be disturbed
such that the voltage utilization ratio will be degraded.

In practice, the experimental measured distorted phase voltage D̂a is really a func-
tion of ia value, as is later discussed in Section 5.11.

5.11. Experimental Measurement of Inverter Nonlinearity

We can measure the inverter nonlinearity by exciting the motor with dc current. For

example, we excite iαs =
√

3
2 A. The resulting phase a distortion voltage will be:

Da = Vdist [2sign (ia)− sign (ib)− sign (ic)]

= Vdist [2sign (1A)− sign (−0.5A)− sign (−0.5A)]

= 4Vdist

(346)

which is a function of the signs of phase currents. Thus, one might conclude that the
distorted voltage can be identified by applying a constant α-axis current.

However, the measured voltage-current characteristics of an inverter indicates that
Da is a function of current value, as exemplified in Fig. 30, i.e., Da = f(ia). As a
result, if iα is regulated to be constant, it means the three phase currents will have
different amplitudes, such that the 0 6= |Da| 6= |Db| 6= 0, i.e., the inverter nonlinearity
cannot be easily identified.

5.11.1. Standstill DC Test

As suggested in [26], to make sure phase distorted voltages are at the same current
level, we can measure voltage-current characteristics at β-axis. By applying a dc cur-
rent at β-axis such that the current vector angle is θi = 90◦, from Clarke transforma-

tion, we have ia = iα = 0 and ib = −ic =
√

2
3

√
3

2 iβs. Since the current at phase b is of

the same amplitude of phase c, it is valid to assume the distorted voltage Db equals
to Dc.

During a β-axis dc test, the maximum of measured dc phase voltage is 3Vdist and
as a result, the Db trace in Fig. 30 has a plateau voltage of Vplateau = 3Vdist,

5.11.2. Blocked Rotor Rotating Field Test

The disadvantage of a standstill dc test is that it involves only open-loop measure-
ments. Owing to measurement errors, the 3 phase current after compensation does not
necessarily look sinusoidal.

If we can block the motor rotor, by applying a dc q-axis current in a slow rotating
dq frame, we can measure the inverter nonlinearity as the disturbance voltage that is
rejected by the current loop PI regulator.
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Figure 30. The measured voltage-current characteristics of an inverter when dc bus voltage is Udc = 180 V.

5.12. Curve Fitting

Typical fitting function includes arctan, exponential function and sigmoid function.

5.12.1. Fitting for Standstill DC Test

We will use sigmoid function and SciPy for example. The Sigmoid function for curve
fitting is implemented in Python as follows

1 # Given two iterables: xdata and ydata
2 def sigmoid(x, a1, a2, a3):
3 return a1 * x + a2 / (1 + np.exp(-a3 * x)) - a2/2
4 from scipy.optimize import curve_fit
5 popt, pcov = curve_fit(sigmoid, xdata, ydata)
6 a1, a2, a3 = popt

where the three coefficients, a1,
a2

2 , a3 are the straight line slope, the plateau voltage,
and the exponent coefficient, respectively. Example fitting results are shown in Fig. 30.

In our case, a1 is an estimate of the total resistance including inverter resistance and
winding resistance, and we will only need a2 and a3 for compensating the distorted
voltage, depending on the inverter model.

If Choi and Sul’s model is adopted for compensation, based on (346), all we need is
to solve for Vdist = a2

2 /3.
If look-up table or fitted curve is adopted for compensation, with the measured

phase current ix, the compensation voltage will be D̂x(ix) = sigmoid(ix, a1, a2, a3). In

ideal situation, we would have D̂x(ix)−Dx(ix) = −
∑

x=a,b,c sign(ix).

5.12.2. Fitting for Blocked Rotor Rotating Field Test

By doing a rotating field test, we make sure the 3 phase currents are sinusoidal using
PI regulator in dq frame. The voltage-current characteristics obtained in a blocked
rotor rotating field test do not include the zero sequence voltage u0.

One realizes there is mismatch between the result of the blocked rotor rotating field



EE275 Spring’23 119 Chen, Jiahao

test to that of standstill dc test, mainly during low current region. We tend to believe
that the result from the blocked rotor rotating field test is more accurate, meaning
the standstill dc test can be erroneous during low current region.

In practical situation, a blocked rotor is not usually available. This reveals the need
of online correction of the a3 coefficient that corresponds to the low current region.

5.13. Stray Capacitors

This section will briefly review the one parameter inverter model based on physics of
power switches, where stray capacitors (or parasite capacitors, see Cstray in Fig. 26)
are neglected. In order to account for the effect of stray capacitors, the experimentally
measured U-I curve data points are fitted to modified sigmoid function, which results
in a two parameter inverter model that will later be identified online.

5.13.1. One Parameter Inverter Model

The inverter is modelled using one unknown parameter Vdist

Da = Vdist [2sign (ia)− sign (ib)− sign (ic)] (347)

which does not match our desired model in which D̂x(ix) is only a function of single
phase current ix. To remove Da’s dependency on other phases, a zero sequence voltage

u0 = Vdist [sign (ia) + sign (ib) + sign (ic)] (348)

can be added to Da, leading to the one parameter inverter model D̂x(ix):

D̂a = Da + u0 = 3Vdistsign (ia) = Vplateausign (ia) (349)

which gives the plateau voltage as Vplateau = 3Vdist.
The one parameter inverter model has taken dead-time, turn-on/off time, conduc-

tion voltage drop into account [26]. When the compensation voltage in (349) is put in
action, excessive compensation occurs during zero-current crossing. This fact implies
that there exists neglected effect that is contributing to the terminal voltage when
current is low.

5.13.2. Effect of Stray Capacitors

Following [27], during dead-time, both upper and lower power switches are turned
off. Consequently, the actual inverter terminal voltage uxg is not controlled, and is
determined by the load current ix and the power switch’s small yet non-negligible
stray capacitor Cstray, as shown in Fig. 26. As per definition of capacitor, the rate
of change of voltage across the stray capacitor is proportional to the load current
ix. When ix is so large that the charging of stray capacitor finishes instantaneously
during dead-time, the effect of Cstray can be neglected. On the other hand, the stray
capacitor’s effect becomes dominant during dead-time, when load current ix is so low
such that [28, (7.3)]

|ix| < iZCC , Cstray
Vdc

Tdead
(350)
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where the threshold value iZCC depends on the dead time Tdead, dc bus voltage Vdc

and stray capcitance Cstray. When the stray capacitor is slowly charged, the actual
output terminal voltage uxg would vary linearly, instead of a step change, leading to
extra voltage gain (when ix > 0) or loss (when ix < 0).

In conclusion, the compensation in (349) must be reduced in low current region, e.g.,
when |ix| < iZCC, but the extent of the reduction is a nonlinear function of load cur-
rent ix, and additional shape parameters are needed to describe this inverter model’s
dependency on load current ix. In extreme case, when ix = 0, the compensation volt-
age should be D̂x(0) = 0. It is suggested in [27] to experimentally measure the voltage
distortion caused by stray capacitors.

5.14. Online Detection of Inverter Parameters

See [8].

5.15. Delay on Updating the PWM Comparison Register

See [28, Figure 7.15]. When the motor spins at higher speeds, at the time the calculated
inverter compensation voltage is applied, the motor rotor would have rotated by a
certain angle. To compensate the prorogation time from algorithm to update of gate
signal, S. K. Sul suggested a 1.5 Ts compensation. The compensation is dependent on
the synchronous speed and sampling time TS .

5.16. Ortega’s DTC Math

See [29].

6. Chapter 6: Motion Control

6.1. Command Tracking Performance

6.2. Disturbance Rejecting Performance

6.3. Noise Attenuating Performance

6.4. Two-Degree-Of-Freedom PI Regulator
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Appendix A. List of Trigonometric Identities

For a complete list, see [1].

sin (A±B) = sinA cosB ± cosA sinB (A1)

cos (A±B) = cosA cosB ∓ sinA sinB (A2)

sinA cosB =
1

2
[sin (A+B) + sin (A−B)] (A3)

cosA cosB =
1

2
[cos (A+B) + cos (A−B)] (A4)

sinA sinB =
1

2
[cos (A−B)− cos (A+B)] (A5)

cosA+ cos

(
A− 2π

3

)
+ cos

(
A+

2π

3

)
= 0 (A6)

sinA+ sin

(
A− 2π

3

)
+ sin

(
A+

2π

3

)
= 0 (A7)

cos2A+ cos2

(
A− 2π

3

)
+ cos2

(
A+

2π

3

)
=

3

2
(A8)

sin2A+ sin2

(
A− 2π

3

)
+ sin2

(
A+

2π

3

)
=

3

2
(A9)

sinA sin

(
A− 2π

3

)
+ sin

(
A− 2π

3

)
sin

(
A+

2π

3

)
+ sin

(
A+

2π

3

)
sinA = −3

4
(A10)

cosA cos

(
A− 2π

3

)
+ cos

(
A− 2π

3

)
cos

(
A+

2π

3

)
+ cos

(
A+

2π

3

)
cosA = −3

4
(A11)

sinA cosA+ sin

(
A− 2π

3

)
cos

(
A− 2π

3

)
+ sin

(
A+

2π

3

)
cos

(
A+

2π

3

)
= 0

(A12)

sinA cos

(
A+

2π

3

)
+ sin

(
A− 2π

3

)
cosA+ sin

(
A+

2π

3

)
cos

(
A− 2π

3

)
= −3

√
3

4
(A13)

sinA cos

(
A− 2π

3

)
+ sin

(
A− 2π

3

)
cos

(
A+

2π

3

)
+ sin

(
A+

2π

3

)
cosA =

3
√

3

4
(A14)

16. cosA cosB + cos
(
A− 2π

3

)
cos
(
B − 2π

3

)
+ cos

(
A+ 2π

3

)
cos
(
B + 2π

3

)
= 3

2 cos (A−B)
(A15)

17. sinA sinB + sin
(
A− 2π

3

)
sin
(
B − 2π

3

)
+ sin

(
A+ 2π

3

)
sin
(
B + 2π

3

)
= 3

2 cos (A−B)
(A16)

18. sinA cosB + sin
(
A− 2π

3

)
cos
(
B − 2π

3

)
+ sin

(
A+ 2π

3

)
cos
(
B + 2π

3

)
= 3

2 sin (A−B)
(A17)
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Appendix B. Multi-Phase Machine Theory

This theory studies electric machine that utilizes the reaction torque, and one conse-
quence of this assumption is that the magnetomotive force F differs from the magnetic
flux density B only by a scalar, and in other words, a uniform air gap is assumed.

Generally speaking, the winding function of a symmetrical m phase winding that
has a phase band of π/m in its star of slots plot, can be written as a Fourier series at
an angular location α in the air gap [30]:

Nj (α) =

∞∑
v=1

N(v) cos

{
v

[
α− (j − 1)

2π

m

]}
, j = 1, 2, ...,m (B1)

where j = 1, 2, ...,m is phase index, v = 1, 3, 5, ...,∞ is harmonic index, and α denotes
an arbitrary electrical angular location along the air gap, meaning that α is npp times
mechanical angular location along the air gap, with npp as the pole pair number of
the fundamental component of the winding function of the multi-phase winding.

For a m = 3 phase winding, (B1) becomes:

N1 (α) = N(1) cos (α) +N(3) cos (3α) +N(5) cos (5α) + · · ·

N2 (α) = N(1) cos

(
α− 2π

3

)
+N(3) cos

[
3

(
α− 2π

3

)]
+N(5) cos

[
5

(
α− 2π

3

)]
+ · · ·

N3 (α) = N(1) cos

(
α− 4π

3

)
+N(3) cos

[
3

(
α− 4π

3

)]
+N(5) cos

[
5

(
α− 4π

3

)]
+ · · ·

(B2)
The coefficients of the Fourier series are known as winding factors, indicating the wind-
ing’s capability to produce a v-th order harmonic magnetomotive force per ampere.
The winding factors can be calculated with the aid of star of slots plot.

For (B1), the corresponding m phase current excitation with intentionally injected
harmonic components is

ij =

∞∑
k=1

ij(k) =

∞∑
k=1

I(k) sin

{
k

[
ωsynt− (j − 1)

2π

m

]
+ φ(k)

}
(B3)

where j = 1, 2, ...,m is phase index, k = 1, 3, 5, ...,∞ is current harmonic index, φ(k)

is initial phase angle, and ωsyn is the synchronous angular speed of the fundamental
component. For a three phase winding, the excitation becomes:

i1 = I(1) sin
(
ωsynt+ φ(1)

)
+ I(3) sin

[
3
(
ωsynt+ φ(3)

)]
+ I(5) sin

[
5
(
ωsynt+ φ(5)

)]
+ . . .

i2 = I(1) sin

(
ωsynt−

2π

3
+ φ(1)

)
+ I(3) sin

[
3

(
ωsynt−

2π

3
+ φ(3)

)]
+ I(5) sin

[
5

(
ωsynt−

2π

3
+ φ(5)

)]
+ . . .

i3 = I(1) sin

(
ωsynt−

4π

3
+ φ(1)

)
+ I(3) sin

[
3

(
ωsynt−

4π

3
+ φ(3)

)]
+ I(5) sin

[
5

(
ωsynt−

4π

3
+ φ(5)

)]
+ . . .

(B4)
For each current harmonic, it produces a magnetomotive force waveform as

F(k) (α) = N1 (α) i1(k) +N2 (α) i2(k) + · · ·+Nmim(k) (B5)
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and the total resulting magnetomotive force in the air gap is

F (α, t) =

∞∑
k=1

F(k) (α, t) =

∞∑
k=1

[
N1 (α) i1(k) (t) +N2 (α) i2(k) (t) + · · ·+Nm (α) im(k) (t)

]
(B6)

The total magnetomotive force due to k-th order current harmonic is

F(k) (α) =

m∑
j=1

ij(k)Nj

=

m∑
j=1

{
I(k) sin

[
k

(
ωsynt− (j − 1)

2π

m

)
+ φ(k)

] ∞∑
v=1

N(v) cos

[
v

(
α− (j − 1)

2π

m

)]}

= I(k)

m∑
j=1

(
sinA

∞∑
v=1

N(v) cosB

)

=
I(k)

2

m∑
j=1

{ ∞∑
v=1

N(v) [sin (A+B) + sin (A−B)]

}

=

∞∑
v=1

F(k,v)

(B7)
The v-th order magnetomotive force harmonic excited by the k-th order current har-
monic is

F(k,v) =
I(k)

2

m∑
j=1

{
N(v) [sin (A+B) + sin (A−B)]

}
A = k

[
ωsynt− (j − 1)

2π

m

]
+ φ(k)

B = v

[
α− (j − 1)

2π

m

]
A+B = k

[
ωsynt− (j − 1)

2π

m

]
+ φ(k) + v

[
α− (j − 1)

2π

m

]
⇒ A+B =

(
kωsynt+ φ(k) + vα

)
− (v + k) (j − 1)

2π

m

A−B = k

[
ωsynt− (j − 1)

2π

m

]
+ φ(k) − v

[
α− (j − 1)

2π

m

]
⇒ A−B =

(
kωsynt+ φ(k) − vα

)
+ (v − k) (j − 1)

2π

m

(B8)

which equals 0 when k± v does not equal 0 or multiple of m so that the trigonometry
equality:

∑m
j=1 sin

(
x+ j 2π

m

)
= 0 can be applied.
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Iterating through all k and v values, we have the following results:

F(k,v) (α, t) =


mN(v)I(k)

2 sin
(
kωsynt+ φ(k)

)
cos (vα) , if k ± v = 0,±m,±2m, . . .

mN(v)I(k)
2 sin

(
kωsynt+ φ(k) + vα

)
, if k + v = 0,m, 2m, . . .

mN(v)I(k)
2 sin

(
kωsynt+ φ(k) − vα

)
, if k − v = 0,±m,±2m, . . .

0 , others

(B9)
The electrical angular speed of F(k,v) can be derived as follows (which imposes that

F(k,v) = Const. stays as a constant):

d

dt

(
kωsynt+ φ(k) ± vα

)
= 0 ⇒ kωsyn ± v

d

dt
α = 0 ⇒ d

dt
α = ∓k

v
ωsyn (B10)

The desired magnetomotive force should have constant speed of d
dtα = ωsyn, that is,

k = v, and note when k = v, the angular speed is always positive.
For a three phase machine, the inverter (especially with low switching to funda-

mental ratio) might inject 5th and 7th order current harmonics, and those current
harmonics will generate harmonic magnetomotive force rotating at speed of −5

v ωsyn

and 7
vωsyn, respectively, which are responsible for torque ripple that has a frequency

of 6 times the synchronous frequency, 6ωsyn

2π [Hz].
For a three phase machine, the magnetomotive force harmonic of 5th and 7th has

a speed of −k5 ωsyn and k
7ωsyn, respectively. Let k = 1, meaning only fundamental

current is excited. In this case, according to Faraday’s law of induction, the harmonic
magnetic field induces an back electromotive force in the three phase winding that has
an angular speed of ωsyn, and such electromotive force is often modeled as harmonic
leakage inductance because it is a synchronous voltage. The harmonic magnetic field
produces remarkable torque during direct starting of a grid-fed induction machine.

Appendix C. Field Modulation Principles

C.1. Magnetic Permeance

Constant Magnetic Conductance
Rotor Angle Dependent Magnetic Conductance

C.2. Magnetic Induction

Appendix D. Leakage Inductance

This course introduces a series of leakage inductance symbols: the phase self-leakage in-
ductance Lσ, the phase mutual-leakage inductance Mσ, the stator leakage inductance:
Lls = Lσ −Mσ, the rotor leakage inductance: Llr.

See Lipo (2012), Section 1.12. We have three main types of leakage inductance,
including slot leakage, end winding leakage, and harmonic (or belt, differential) leakage.

Slot leakage, end winding leakage is self-inductance.
The harmonic leakage occurs between different phases.
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Appendix E. The Magnetomotive Force of One Conductor

See “harmonic field effects in induction machines” (1977).

Appendix F. Numerical Simulation Basics

F.1. Euler Method

F.2. Runge-Kutta Method

Appendix G. Space Vector PWM

There are at least hundreds of references that explain SVPWM for you. So, let’s do it
from a differen perspective, by explaining the famous C codes for SVPWM provided
by Texas Instruments.

1 @njit(nogil=True)
2 def SVGEN_DQ(v, one_over_Vdc):
3
4 # Normalization (which converts [Volt] into [s])
5 Talfa = v.Ualfa * one_over_Vdc # v.Ualfa is in sense of

amplitude invariant Clarke transformation
6 Tbeta = v.Ubeta * one_over_Vdc # v.Ubeta is in sense of

amplitude invariant Clarke transformation
7 Tz = v.Unot * one_over_Vdc # duration of the added zero

sequence voltage
8
9 # Inverse clarke transformation??

10 A = Tbeta # 0 degree line pointing at 0 degree
11 C = 1.7320508*Talfa - Tbeta # C = sin( 60/180*np.pi)*Talfa -

sin(30/180*np.pi)*Tbeta
12 B = -1.7320508*Talfa - Tbeta # B = -sin( 60/180*np.pi)*Talfa -

sin(30/180*np.pi)*Tbeta
13
14 # 60 degree Sector determination
15 Sector = 0
16 if (A > 0): Sector = 1
17 if (C > 0): Sector = Sector+2
18 if (B > 0): Sector = Sector+4
19
20 # X,Y,Z calculations (Note an additional factor of 1.7320508 is

introduced to be equivalent to normalizing Ualfa and Ubeta
to a base value of Vdc/sqrt(3))

21 XXX = Tbeta*1.7320508
22 YYY = 1.5*Talfa + Tbeta*0.8660254
23 ZZZ = -1.5*Talfa + Tbeta*0.8660254
24
25 if Sector == 0: # Sector 0: this is special case for (Ualfa,

Ubeta) = (0,0)*/
26 v.Ta = 0.5
27 v.Tb = 0.5
28 v.Tc = 0.5
29 if Sector == 1: #Sector 1: t1=Z and t2=Y (abc ---> Tb,Ta,Tc)*/
30 t1 = ZZZ
31 t2 = YYY
32 v.Tb=(1-t1-t2)*0.5 + Tz*0.5
33 v.Ta = v.Tb+t1 # taon = tbon+t1 */
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34 v.Tc = v.Ta+t2 # tcon = taon+t2 */
35 elif Sector == 2: # Sector 2: t1=Y and t2=-X (abc ---> Ta,

Tc,Tb)*/
36 t1 = YYY
37 t2 = -XXX
38 v.Ta=(1-t1-t2)*0.5 + Tz*0.5
39 v.Tc = v.Ta+t1 # tcon = taon+t1 */
40 v.Tb = v.Tc+t2 # tbon = tcon+t2 */
41 elif Sector == 3: # Sector 3: t1=-Z and t2=X (abc ---> Ta,

Tb,Tc)*/
42 t1 = -ZZZ
43 t2 = XXX
44 v.Ta=(1-t1-t2)*0.5 + Tz*0.5
45 v.Tb = v.Ta+t1 # tbon = taon+t1 */
46 v.Tc = v.Tb+t2 # tcon = tbon+t2 */
47 elif Sector == 4: # Sector 4: t1=-X and t2=Z (abc ---> Tc,

Tb,Ta)*/
48 t1 = -XXX
49 t2 = ZZZ
50 v.Tc=(1-t1-t2)*0.5 + Tz*0.5
51 v.Tb = v.Tc+t1 # tbon = tcon+t1 */
52 v.Ta = v.Tb+t2 # taon = tbon+t2 */
53 elif Sector == 5: # Sector 5: t1=X and t2=-Y (abc ---> Tb,

Tc,Ta)*/
54 t1 = XXX
55 t2 = -YYY # tbon = (1-t1-t2)*0.5 */
56 v.Tb=(1-t1-t2)*0.5 + Tz*0.5
57 v.Tc = v.Tb+t1 # taon = tcon+t2 */
58 v.Ta = v.Tc+t2
59 elif Sector == 6: # Sector 6: t1=-Y and t2=-Z (abc ---> Tc,

Ta,Tb)*/
60 t1 = -YYY
61 t2 = -ZZZ
62 v.Tc=(1-t1-t2)*0.5 + Tz*0.5
63 v.Ta = v.Tc+t1 # taon = tcon+t1 */
64 v.Tb = v.Ta+t2 # tbon = taon+t2 */
65
66 # Logic reversal
67 v.Ta = 1-v.Ta
68 v.Tb = 1-v.Tb
69 v.Tc = 1-v.Tc
70
71 # Set max allowed duty ratio
72 if (v.Ta>v.SYSTEM_MAX_PWM_DUTY_LIMATATION): v.Ta=v.

SYSTEM_MAX_PWM_DUTY_LIMATATION
73 if (v.Tb>v.SYSTEM_MAX_PWM_DUTY_LIMATATION): v.Tb=v.

SYSTEM_MAX_PWM_DUTY_LIMATATION
74 if (v.Tc>v.SYSTEM_MAX_PWM_DUTY_LIMATATION): v.Tc=v.

SYSTEM_MAX_PWM_DUTY_LIMATATION
75 if (v.Ta<v.SYSTEM_MIN_PWM_DUTY_LIMATATION): v.Ta=v.

SYSTEM_MIN_PWM_DUTY_LIMATATION
76 if (v.Tb<v.SYSTEM_MIN_PWM_DUTY_LIMATATION): v.Tb=v.

SYSTEM_MIN_PWM_DUTY_LIMATATION
77 if (v.Tc<v.SYSTEM_MIN_PWM_DUTY_LIMATATION): v.Tc=v.

SYSTEM_MIN_PWM_DUTY_LIMATATION
78
79 return v
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G.1. The Amplitude Invariant Clarke Transformation

One should realize the transformation matrix in (344) is not T (0).
Later in this section when we are discussing space vector modulation, there is a

need to treat the projected phase axes (let’s denote them as ~ap, ~bp and ~cp) in the DQ
plane as the actual axes for the phase quantities. This can be equivalently achieved

by scaling the transformation matrix T (0) by a factor of
√

2
3 , which equals cos(35.3◦),

the cosine of the angle between ~a-axis and ~ap-axis (note 35.3◦ = 90◦ − 54.7, cf. the
direction cosine in (104)).

After the scale by a factor of cos(35.3◦), the conservative of power or energy is lost
after the transformation. In other words, the power or energy in αβγ frame is only two-
thirds of that in abc frames. This transformation is known as the amplitude invariant
transformation because now 1 V of voltage in a-axis now corresponds to exactly 1 V
of voltage in ap-axis or α-axis.

G.2. Pulse Width Modulation and Volt-Second Equivalence

The easy-to-ignore assumption that has been made in the development of the SVPWM
technique is that the output terminal voltage is equal to duty ratio times dc bus
voltage. In practice, this assumption is valid because of the volt-second equivalence
property of inductive circuit.

G.3. Why Centered and Why Triangular Carrier Waveform

There is another hidden assumption about the PWM frequency. The PWM frequency
is assumed to be high enough such that the modulation waveform seems to be a
constant value in one cycle of carrier waveform.
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