ACMSimC: Voltage-Current Decoupling

5 minute read

此文为本系列第四集,第一集请戳:传送门

前言

很久没更新了,最近在制作样机啊什么的,分身乏术。昨天还去当了小半天水手嘿。

电压电流解耦控制,其实就是一个很简单的比例积分(PI)反馈控制器和前馈控制器结合的例子。在本次视频里,我们通过高速反转运行,来显示了在动态运行情况下,电流环解耦控制的必要性。

这里就是一些推导,具体去看视频吧

推导在这里,但是知乎你不能直接复制 LaTeX 代码,可以去我的博客相关页面邮件复制 TeX 代码。视频中的代码和这边的公式推导结果有一点点出入,虽然无伤大雅,但是还是有点难受的。我后来一想,一开始的方程就用错了,如果一开始用的是:$L_\sigma p i_s = u_s -r_s i_s + p\psi_s$($\psi_s$是定子磁链)的话,就和代码一致了。

下面的Latex代码一开始没法在Github上编译,原因是出现了双打括弧,比如“{ {”(当然,要删掉打括弧中间的这个空格才会报错哦……)。

\[\begin{array}{l} {L_\sigma }p{i_s} = {u_s} - \left( {r_s} + r_{req} \right){i_s} + \left( {\alpha I - \omega J} \right){\psi _\mu }\\ {i_s} = \left[ \begin{array}{l} {i_{\alpha s} }\\ {i_{\beta s} } \end{array} \right]\\ T = \left[ {\begin{array}{*{20}{c} } {\cos {\theta _M} }&{\sin {\theta _M} }\\ { - \sin {\theta _M} }&{\cos {\theta _M} } \end{array} } \right],\,p{\theta _M} = {\omega _\psi }\\ \Rightarrow {L_\sigma }T\left( {p{i_s} } \right) = T{u_s} - \left( {r_s} + {r_{req} } \right)T{i_s} + \left( {\alpha I - \omega J} \right)T{\psi _\mu }\\ \Rightarrow {L_\sigma }T\left( {p{i_s} } \right) = u_s^{MT} - \left( { {r_s} + {r_{req} }} \right)i_s^{MT} + \left( {\alpha I - \omega J} \right)\psi _\mu ^{MT}\\ p\left( {T{i_s} } \right) = \left( {pT} \right){i_s} + Tp{i_s} \Rightarrow Tp{i_s} = p\left( {T{i_s} } \right) - \left( {pT} \right){i_s}\\ \Rightarrow p\left( {T{i_s} } \right) - \left( {pT} \right){i_s} = \frac{1}{ { {L_\sigma } }}\left[ {u_s^{MT} - \left( { {r_s} + {r_{req} }} \right)i_s^{MT} + \left( {\alpha I - \omega J} \right)\psi _\mu ^{MT} } \right]\\ \Rightarrow pi_s^{MT} - \left( {pT} \right){i_s} = \frac{1}{ { {L_\sigma } }}\left[ {u_s^{MT} - \left( { {r_s} + {r_{req} }} \right)i_s^{MT} + \left( {\alpha I - \omega J} \right)\psi _\mu ^{MT} } \right]\\ pT = {\omega _\psi }\left[ {\begin{array}{*{20}{c} } { - \sin {\theta _M} }&{\cos {\theta _M} }\\ { - \cos {\theta _M} }&{ - \sin {\theta _M} } \end{array} } \right] = -{\omega _\psi }JT,\,p{\theta _M} = {\omega _\psi }\\ \Rightarrow pi_s^{MT} - {\omega _\psi }\left[ {\begin{array}{*{20}{c} } { - \sin {\theta _M} }&{\cos {\theta _M} }\\ { - \cos {\theta _M} }&{ - \sin {\theta _M} } \end{array} } \right]{i_s} = \frac{1}{ { {L_\sigma } }}\left[ {u_s^{MT} - \left( { {r_s} + {r_{req} }} \right)i_s^{MT} + \left( {\alpha I - \omega J} \right)\psi _\mu ^{MT} } \right]\\ JT = \left[ {\begin{array}{*{20}{c} } 0&{ - 1}\\ 1&0 \end{array} } \right]\left[ {\begin{array}{*{20}{c} } {\cos {\theta _M} }&{\sin {\theta _M} }\\ { - \sin {\theta _M} }&{\cos {\theta _M} } \end{array} } \right] = \left[ {\begin{array}{*{20}{c} } {\sin {\theta _M} }&{ - \cos {\theta _M} }\\ {\cos {\theta _M} }&{\sin {\theta _M} } \end{array} } \right]\\ \Rightarrow pi_s^{MT} = \frac{1}{ { {L_\sigma } }}\left[ {u_s^{MT} - \left( { {r_s} + {r_{req} }} \right)i_s^{MT} + \left( {\alpha I - \omega J} \right)\psi _\mu ^{MT} } \right] - {\omega _\psi }Ji_s^{MT}\\ \Rightarrow p\left[ \begin{array}{l} {i_{Ms} }\\ {i_{Ts} } \end{array} \right] = \frac{1}{ { {L_\sigma } }}\left\{ {\left[ \begin{array}{l} {u_{Ms} }\\ {u_{Ts} } \end{array} \right] - \left( { {r_s} + {r_{req} }} \right)\left[ \begin{array}{l} {i_{Ms} }\\ {i_{Ts} } \end{array} \right] + \left( {\alpha I - \omega J} \right)\left[ \begin{array}{l} {\psi _{M\mu } }\\ {\psi _{T\mu } } \end{array} \right]} \right\} - {\omega _\psi }\left[ \begin{array}{l} {i_{Ts} }\\ {i_{Ms} } \end{array} \right]\\ \Rightarrow p\left[ \begin{array}{l} {i_{Ms} }\\ {i_{Ts} } \end{array} \right] = \frac{1}{ { {L_\sigma } }}\left\{ {\left[ \begin{array}{l} {u_{Ms} }\\ {u_{Ts} } \end{array} \right] - \left( { {r_s} + {r_{req} }} \right)\left[ \begin{array}{l} {i_{Ms} }\\ {i_{Ts} } \end{array} \right] + \left( {\alpha \left[ \begin{array}{l} {L_\mu }{i_{Ms} }\\ 0 \end{array} \right] - \omega \left[ \begin{array}{l} 0\\ {L_\mu }{i_{Ms} } \end{array} \right]} \right)} \right\} - {\omega _\psi }\left[ \begin{array}{l} {i_{Ts} }\\ {i_{Ms} } \end{array} \right]\\ {\text{There\,could\,be\,error\,in\,the\,results...}} \end{array}\]

Categories:

Updated:

Leave a comment